Esempio n. 1
0
    def log_visuals(self, paths, epoch, log_dir):
        # turn the xy pos into arrays you can work with
        # N_paths x path_len x 2
        # xy_pos = np.array([[d['xy_pos'] for d in path["env_info"]] for path in paths])

        # plot using seaborn heatmap
        xy_pos = [np.array([d['xy_pos'] for d in path["env_info"]]) for path in paths]
        xy_pos = np.array([d['xy_pos'] for path in paths for d in path['env_info']])
        
        PLOT_BOUND = int(self.env_bound * 1.25)

        plot_seaborn_heatmap(
            xy_pos[:,0],
            xy_pos[:,1],
            30,
            'Point-Mass Heatmap Epoch %d'%epoch,
            os.path.join(log_dir, 'heatmap_epoch_%d.png'%epoch),
            [[-PLOT_BOUND,PLOT_BOUND], [-PLOT_BOUND,PLOT_BOUND]]
        )
        plot_scatter(
            xy_pos[:,0],
            xy_pos[:,1],
            30,
            'Point-Mass Scatter Epoch %d'%epoch,
            os.path.join(log_dir, 'scatter_epoch_%d.png'%epoch),
            [[-PLOT_BOUND,PLOT_BOUND], [-PLOT_BOUND,PLOT_BOUND]]
        )

        return {}
    def log_new_ant_multi_statistics(self, paths, epoch, log_dir):
        # turn the xy pos into arrays you can work with
        # N_paths x path_len x 2
        # xy_pos = np.array([[d['xy_pos'] for d in path["env_infos"]] for path in paths])

        # plot using seaborn heatmap
        xy_pos = [
            np.array([d['xy_pos'] for d in path["env_infos"]])
            for path in paths
        ]
        xy_pos = np.array(
            [d['xy_pos'] for path in paths for d in path['env_infos']])

        PLOT_BOUND = 6

        plot_seaborn_heatmap(
            xy_pos[:, 0], xy_pos[:, 1], 30, 'Ant Heatmap Epoch %d' % epoch,
            os.path.join(log_dir, 'heatmap_epoch_%d.png' % epoch),
            [[-PLOT_BOUND, PLOT_BOUND], [-PLOT_BOUND, PLOT_BOUND]])
        plot_scatter(xy_pos[:, 0], xy_pos[:, 1], 30,
                     'Ant Heatmap Epoch %d' % epoch,
                     os.path.join(log_dir, 'scatter_epoch_%d.png' % epoch),
                     [[-PLOT_BOUND, PLOT_BOUND], [-PLOT_BOUND, PLOT_BOUND]])

        return {}
def gen_plus_sign(distance, num_points_per_direction, save_path):
    SCALE = 1.0
    # CENTER_BUFFER = 3*SCALE
    # CENTER_BUFFER = 6*SCALE
    CENTER_BUFFER = 0.0
    print(SCALE, CENTER_BUFFER)
    X = []
    Y = []

    # East
    for _ in range(num_points_per_direction):
        x = np.random.uniform(CENTER_BUFFER, float(distance))
        y = np.random.normal(loc=0.0, scale=SCALE)
        X.append(x)
        Y.append(y)

    # West
    for _ in range(num_points_per_direction):
        x = np.random.uniform(-float(distance), -CENTER_BUFFER)
        y = np.random.normal(loc=0.0, scale=SCALE)
        X.append(x)
        Y.append(y)

    # North
    for _ in range(num_points_per_direction):
        y = np.random.uniform(CENTER_BUFFER, float(distance))
        x = np.random.normal(loc=0.0, scale=SCALE)
        X.append(x)
        Y.append(y)

    # South
    for _ in range(num_points_per_direction):
        y = np.random.uniform(-float(distance), -CENTER_BUFFER)
        x = np.random.normal(loc=0.0, scale=SCALE)
        X.append(x)
        Y.append(y)

    plot_2dhistogram(X, Y, 30, 'test', 'plots/junk_vis/test_plus.png',
                     [[-distance, distance], [-distance, distance]])
    plot_scatter(X, Y, 30, 'test', 'plots/junk_vis/test_plus_scatter.png',
                 [[-distance, distance], [-distance, distance]])
    plot_seaborn_heatmap(X, Y, 30, 'test', 'plots/junk_vis/test_plus_sns.png',
                         [[-distance, distance], [-distance, distance]])

    XY_DATA = np.array([X, Y]).T
    print(XY_DATA.shape)
    print(np.mean(XY_DATA, axis=0).shape)
    print(np.std(XY_DATA, axis=0).shape)
    joblib.dump(
        {
            'xy_data': XY_DATA,
            'xy_mean': np.mean(XY_DATA, axis=0),
            'xy_std': np.std(XY_DATA, axis=0)
        },
        save_path,
        compress=3)
    def log_new_ant_multi_statistics(self, paths, epoch, log_dir):
        xy_pos = np.array(
            [d['xy_pos'] for path in paths for d in path['env_infos']])

        PLOT_BOUND = 60

        plot_scatter(xy_pos[:, 0], xy_pos[:, 1], 30, 'XY Pos Epoch %d' % epoch,
                     os.path.join(log_dir, 'xy_pos_epoch_%d.png' % epoch),
                     [[-PLOT_BOUND, PLOT_BOUND], [-PLOT_BOUND, PLOT_BOUND]])

        return {}
Esempio n. 5
0
def gen_plus_sign(distance, num_points_per_direction, save_path):
    RADIUS = 2.0
    SCALE = 1.0
    # CENTER_BUFFER = 3*SCALE
    # CENTER_BUFFER = 6*SCALE
    CENTER_BUFFER = 0.0
    print(SCALE, CENTER_BUFFER)
    X = []
    Y = []

    for _ in range(num_points_per_direction * 4):
        # y = np.random.uniform(-float(distance), -CENTER_BUFFER)
        # x = np.random.normal(loc=0.0, scale=SCALE)
        xy = np.random.normal(size=2)
        xy = xy / np.linalg.norm(xy)
        xy *= RADIUS
        xy += np.random.normal(size=2)*0.15
        X.append(xy[0])
        Y.append(xy[1])

    plot_2dhistogram(
        X, Y, 30, 'test', 'plots/junk_vis/test_plus.png', [[-distance,distance], [-distance,distance]]
    )
    plot_scatter(
        X, Y, 30, 'test', 'plots/junk_vis/test_plus_scatter.png', [[-distance,distance], [-distance,distance]]
    )
    plot_seaborn_heatmap(
        X, Y, 30, 'test', 'plots/junk_vis/test_plus_sns.png', [[-distance,distance], [-distance,distance]]
    )

    XY_DATA = np.array([X,Y]).T
    print(XY_DATA.shape)
    print(np.mean(XY_DATA, axis=0).shape)
    print(np.std(XY_DATA, axis=0).shape)
    joblib.dump(
        {
            'xy_data': XY_DATA,
            'xy_mean': np.mean(XY_DATA, axis=0),
            'xy_std': np.std(XY_DATA, axis=0)
        },
        save_path,
        compress=3
    )
    def log_visuals(self, paths, epoch, log_dir):
        xyz = np.array([d['xyz'] for path in paths for d in path['env_info']])
        a = np.array([d['a'] for path in paths for d in path['env_info']])
        
        plot_scatter(
            xyz[:,0],
            xyz[:,1],
            30,
            'Top-Down Epoch %d'%epoch,
            os.path.join(log_dir, 'top_down_epoch_%d.png'%epoch),
            [[-1,1], [-1.6,0.4]]
        )
        plot_scatter(
            a.flatten(),
            xyz[:,2],
            30,
            'AZ Epoch %d'%epoch,
            os.path.join(log_dir, 'a_z_epoch%d.png'%epoch),
            [[-np.pi,np.pi], [-1,1]]
        )

        return {}
Esempio n. 7
0
    def log_visuals(self, paths, epoch, log_dir):
        grip_pos = np.array(
            [d['grip_pos'] for path in paths for d in path['env_info']])
        obj_pos = np.array(
            [d['obj_pos'] for path in paths for d in path['env_info']])

        # PLOT_BOUND = 2

        plot_scatter(
            grip_pos[:, 0],
            grip_pos[:, 1],
            30,
            'Grip Pos Epoch %d' % epoch,
            os.path.join(log_dir, 'grip_pos_epoch_%d.png' % epoch),
            # [[-PLOT_BOUND,PLOT_BOUND], [-PLOT_BOUND,PLOT_BOUND]]
            [
                # [0.98697072 - 0.3, 0.98697072 + 0.175],
                # [0.74914774 - 0.35, 0.74914774 + 0.45]
                [1.34196849 - 0.3, 1.34196849 + 0.2],
                [0.74910081 - 0.35, 0.74910081 + 0.35]
            ])
        plot_scatter(
            obj_pos[:, 0],
            obj_pos[:, 1],
            30,
            'Obj Pos Epoch %d' % epoch,
            os.path.join(log_dir, 'obj_pos_epoch_%d.png' % epoch),
            # [[-PLOT_BOUND,PLOT_BOUND], [-PLOT_BOUND,PLOT_BOUND]]
            [
                # [0.98697072 - 0.3, 0.98697072 + 0.175],
                # [0.74914774 - 0.35, 0.74914774 + 0.45]
                [1.34196849 - 0.3, 1.34196849 + 0.2],
                [0.74910081 - 0.35, 0.74910081 + 0.35]
            ])

        return {}
Esempio n. 8
0
    def log_visuals(self, paths, epoch, log_dir):
        arm_xyz = np.array([d['arm_xyz'] for path in paths for d in path['env_info']])
        obj_xyz = np.array([d['obj_xyz'] for path in paths for d in path['env_info']])

        min_arm_to_obj = np.array([min(-d['reward_near'] for d in path['env_info']) for path in paths])
        min_obj_to_goal = np.array([min(-d['reward_dist'] for d in path['env_info']) for path in paths])

        successes = [np.sum([d['success'] for d in path['env_info']]) > 0 for path in paths]
        success_rate = float(np.sum(successes)) / float(len(successes))
        
        plot_scatter(
            arm_xyz[:,0],
            arm_xyz[:,1],
            30,
            'Pusher Arm X-Y Epoch %d'%epoch,
            os.path.join(log_dir, 'arm_x_y_epoch_%d.png'%epoch),
            [[-0.5,1], [-1,0.5]]
        )
        plot_scatter(
            arm_xyz[:,1],
            arm_xyz[:,2],
            30,
            'Pusher Arm Y-Z Epoch %d'%epoch,
            os.path.join(log_dir, 'arm_y_z_epoch_%d.png'%epoch),
            [[-1,0.5], [-0.5,0.5]]
        )
        plot_scatter(
            obj_xyz[:,0],
            obj_xyz[:,1],
            30,
            'Obj X-Y Epoch %d'%epoch,
            os.path.join(log_dir, 'obj_x_y_epoch_%d.png'%epoch),
            [[-0.5,1], [-1,0.5]]
        )

        return {}
    # XY_DATA = np.array([X,Y]).T
    # print(XY_DATA.shape)
    # print(np.mean(XY_DATA, axis=0).shape)
    # print(np.std(XY_DATA, axis=0).shape)
    # joblib.dump(
    #     {
    #         'data': XY_DATA,
    #         'xy_mean': np.mean(XY_DATA, axis=0),
    #         'xy_std': np.std(XY_DATA, axis=0)
    #     },
    #     save_path,
    #     compress=3
    # )

    bound = 2
    plot_scatter(pusher_points[:, 0], pusher_points[:, 1], 30, 'test',
                 'plots/data_gen/pusher_top_down.png', [[-1, 1], [-1.6, 0.4]])
    plot_scatter(
        a,
        # np.arctan2(pusher_points[:,1], pusher_points[:,0]),
        pusher_points[:, 2],
        30,
        'test',
        'plots/data_gen/pusher_a_z.png',
        [[-np.pi, np.pi], [-1, 1]])
    print(pusher_points.shape)

    joblib.dump({
        'data': pusher_points,
    }, save_path, compress=3)
Esempio n. 10
0
    # save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/slide_column.pkl'
    # data = column(8000)

    save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/corl_box_pushing_from_center.pkl'
    data = uniform_box(10000)




    X = data[:,0]
    Y = data[:,1]
    plot_scatter(
        X, Y, 30, 'test', 'plots/data_gen/obj_scatter.png',
        [
            [1.34196849 - 0.3, 1.34196849 + 0.2],
            [0.74910081 - 0.35, 0.74910081 + 0.35]
        ]
    )
    X = data[:,2]
    Y = data[:,3]
    plot_scatter(
        X, Y, 30, 'test', 'plots/data_gen/grip_scatter.png',
        [
            [1.34196849 - 0.3, 1.34196849 + 0.2],
            [0.74910081 - 0.35, 0.74910081 + 0.35]
        ]
    )

    print(data.shape)
    joblib.dump(
Esempio n. 11
0
        all_samples.append(np.concatenate([arm_traj, obj_traj[:, :2]], axis=1))

    all_samples = np.concatenate(all_samples, axis=0)
    return all_samples


if __name__ == '__main__':
    # save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/pusher_task_states_200_eps_correct.pkl'
    # save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/test.pkl'
    # pusher_points = pusher_to_obj_to_goal(200)

    # save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/pusher_task_states_no_inbetween.pkl'
    save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/corl_pusher_push_states.pkl'
    pusher_points = pusher_to_obj_to_goal_gaussian_target(200)

    # save_path = '/scratch/hdd001/home/kamyar/expert_demos/data_gen/with_gaussian_line_pusher_task_states_no_inbetween.pkl'
    # pusher_points = pusher_to_obj_to_goal_gaussian_target_with_gaussian_line(200)

    plot_scatter(pusher_points[:, 0], pusher_points[:, 1], 30, 'test',
                 'plots/data_gen/pusher_arm_x_y.png', [[-0.5, 1], [-1, 0.5]])
    plot_scatter(pusher_points[:, 1], pusher_points[:, 2], 30, 'test',
                 'plots/data_gen/pusher_arm_y_z.png', [[-1, 0.5], [-0.5, 0.5]])
    plot_scatter(pusher_points[:, 3], pusher_points[:, 4], 30, 'test',
                 'plots/data_gen/pusher_obj.png', [[-0.5, 1], [-1, 0.5]])
    print(pusher_points.shape)

    joblib.dump({
        'data': pusher_points,
    }, save_path, compress=3)