def generateThermo(self): """ Generate the thermodynamic data for the species and fit it to the desired heat capacity model (as specified in the `thermoClass` attribute). """ if self.thermoClass.lower() not in ['wilhoit', 'nasa']: raise Exception('Unknown thermodynamic model "{0}".'.format( self.thermoClass)) species = self.species logging.info('Generating {0} thermo model for {1}...'.format( self.thermoClass, species)) Tlist = numpy.arange(10.0, 3001.0, 10.0, numpy.float64) Cplist = numpy.zeros_like(Tlist) H298 = 0.0 S298 = 0.0 conformer = self.species.conformer for i in range(Tlist.shape[0]): Cplist[i] += conformer.getHeatCapacity(Tlist[i]) H298 += conformer.getEnthalpy(298.) + conformer.E0.value_si S298 += conformer.getEntropy(298.) if not any([ isinstance(mode, (LinearRotor, NonlinearRotor)) for mode in conformer.modes ]): # Monatomic species linear = False Nfreq = 0 Nrotors = 0 Cp0 = 2.5 * constants.R CpInf = 2.5 * constants.R else: # Polyatomic species linear = True if isinstance(conformer.modes[1], LinearRotor) else False Nfreq = len(conformer.modes[2].frequencies.value) Nrotors = len(conformer.modes[3:]) Cp0 = (3.5 if linear else 4.0) * constants.R CpInf = Cp0 + (Nfreq + 0.5 * Nrotors) * constants.R wilhoit = Wilhoit() if Nfreq == 0 and Nrotors == 0: wilhoit.Cp0 = (Cplist[0], "J/(mol*K)") wilhoit.CpInf = (Cplist[0], "J/(mol*K)") wilhoit.B = (500., "K") wilhoit.H0 = (0.0, "J/mol") wilhoit.S0 = (0.0, "J/(mol*K)") wilhoit.H0 = (H298 - wilhoit.getEnthalpy(298.15), "J/mol") wilhoit.S0 = (S298 - wilhoit.getEntropy(298.15), "J/(mol*K)") else: wilhoit.fitToData(Tlist, Cplist, Cp0, CpInf, H298, S298, B0=500.0) if self.thermoClass.lower() == 'nasa': species.thermo = wilhoit.toNASA(Tmin=10.0, Tmax=3000.0, Tint=500.0) else: species.thermo = wilhoit
def generateThermo(self): """ Generate the thermodynamic data for the species and fit it to the desired heat capacity model (as specified in the `thermoClass` attribute). """ if self.thermoClass.lower() not in ['wilhoit', 'nasa']: raise Exception('Unknown thermodynamic model "{0}".'.format(self.thermoClass)) species = self.species logging.debug('Generating {0} thermo model for {1}...'.format(self.thermoClass, species)) if species.thermo is not None: logging.info("Thermo already generated for species {}. Skipping thermo generation.".format(species)) return None Tlist = np.arange(10.0, 3001.0, 10.0, np.float64) Cplist = np.zeros_like(Tlist) H298 = 0.0 S298 = 0.0 conformer = self.species.conformer for i in range(Tlist.shape[0]): Cplist[i] += conformer.getHeatCapacity(Tlist[i]) H298 += conformer.getEnthalpy(298.) + conformer.E0.value_si S298 += conformer.getEntropy(298.) if not any([isinstance(mode, (LinearRotor, NonlinearRotor)) for mode in conformer.modes]): # Monatomic species linear = False Nfreq = 0 Nrotors = 0 Cp0 = 2.5 * constants.R CpInf = 2.5 * constants.R else: # Polyatomic species linear = True if isinstance(conformer.modes[1], LinearRotor) else False Nfreq = len(conformer.modes[2].frequencies.value) Nrotors = len(conformer.modes[3:]) Cp0 = (3.5 if linear else 4.0) * constants.R CpInf = Cp0 + (Nfreq + 0.5 * Nrotors) * constants.R wilhoit = Wilhoit() if Nfreq == 0 and Nrotors == 0: wilhoit.Cp0 = (Cplist[0],"J/(mol*K)") wilhoit.CpInf = (Cplist[0],"J/(mol*K)") wilhoit.B = (500.,"K") wilhoit.H0 = (0.0,"J/mol") wilhoit.S0 = (0.0,"J/(mol*K)") wilhoit.H0 = (H298 -wilhoit.getEnthalpy(298.15), "J/mol") wilhoit.S0 = (S298 - wilhoit.getEntropy(298.15),"J/(mol*K)") else: wilhoit.fitToData(Tlist, Cplist, Cp0, CpInf, H298, S298, B0=500.0) if self.thermoClass.lower() == 'nasa': species.thermo = wilhoit.toNASA(Tmin=10.0, Tmax=3000.0, Tint=500.0) else: species.thermo = wilhoit
Tlist = numpy.array([300.0,400.0,500.0,600.0,800.0,1000.0]) Cplist = numpy.array([24.2, 31.1, 36.9, 41.4, 48, 52.55])*4.184 #J/mol*K H298 = 40.5*4184 #J/mol S298 = 81.35*4.184 #J/mol*K # Polyatomic species linear = False Nfreq = 30 Nrotors = 0 Cp0 = (3.5 if linear else 4.0) * constants.R CpInf = Cp0 + (Nfreq + 0.5 * Nrotors) * constants.R wilhoit = Wilhoit() wilhoit.fitToData(Tlist, Cplist, Cp0, CpInf, H298, S298, B0=500.0)\ NASA_fit = wilhoit.toNASA(Tlist[0], Tlist[-1], Tint=500.0) string = '' f = open('chem.inp', 'a') # Line 1 string += '{0:<16} '.format(SpeciesIdentifier) if len(elementCounts) <= 4: # Use the original Chemkin syntax for the element counts for key, count in elementCounts.iteritems(): if isinstance(key, tuple): symbol, isotope = key chemkinName = getElement(symbol, isotope=isotope).chemkinName