def main(args): if not os.path.isdir(args.result_path): os.makedirs(args.result_path) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) velcro_util = VelcroUtil(robot, robot.mj_sim_param) traj_logger = TrajLogger(args, robot, velcro_util) all_trajectories = [] performance = { 'time': [], 'success': [], 'action_hist': [0, 0, 0, 0, 0, 0] } for i in range(args.num_traj): velcro_param = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() performance, expert_traj = traj_logger.test_network(performance) if len(expert_traj) > 0: all_trajectories.append(expert_traj) print('\n\nFinished trajectory {}, sampled {} steps in this episode'. format(i, len(expert_traj))) geom_type, origin_offset, euler, radius = velcro_param print('Velcro parameters are:{} {} {} {}'.format( geom_type, origin_offset, euler, radius)) print(performance) print('\nCollected {} successful expert trajectories in total'.format( len(all_trajectories))) output = {'args': args, 'traj': all_trajectories} write_results(args.result_path, output)
def main(args): parent = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) model_path = os.path.join(parent, 'models/flat_velcro.xml') model = load_model_from_path(model_path) sim = MjSim(model) viewer = MjViewer(sim) sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) result = [] num_tests = 4 for k in range(num_tests): robot.reset_simulation() tendon_idx = sim_param.velcro_tendon_id[-(k) * 36:0] sim.model.tendon_stiffness[tendon_idx] = 0 # sim.model.body_pos[sim.model._body_name2id['handle']] = np.array([-0.06* (k+1), 0.05, 0.02]) # sim.model.tendon_range[sim_param.handle_tendon_id,1] = (k+1) *np.array([.061, .061, .061, .061, .061, .061]) N = 10 alpha = np.arange(1 / N, 1, 1 / N) for i in range(N - 1): dP = np.array([cos(alpha[i] * np.pi), 0, sin(alpha[i] * np.pi)]) * args.act_mag ret, feedback = run_openloop(robot, dP, args) result.append({ 'percent': k * 36 / 216, 'alpha': alpha[i], 'feedback': feedback }) # clean feedback data for item in result: fb = item['feedback'] fb['touch'] = fb['touch'][0][:, 1:3] fb['touch'][:, 1] -= 300 fb['touch'] = la.norm(fb['touch'], axis=1) fb['pose'] = fb['pose'][0][:, [0, 2]] with open(args.output_path, 'wb') as file: pickle.dump(result, file)
def main(args): parent = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # test_xml = os.path.join(parent, 'tests/test_xmls/case1_flat_-0.6392_0.2779_0_0_2.6210_inf.xml') test_xml = os.path.join(parent, 'models/updateVelcro.xml') num_success = 0 num_trial = 0 total_time = 0 fig, (ax1, ax2, ax3) = plt.subplots(1, 3) ACTIONS = [ 0.06 * np.array([0, 0, 1]), 0.06 * np.array([0, 1, 0]), 0.06 * np.array([1, 0, 0]), 0.06 * np.array([0, -1, 0]), 0.06 * np.array([-1, 0, 0]) ] np.set_printoptions(suppress=True) # load model and sim parameters model = load_model_from_path(test_xml) sim = MjSim(model) if args.render: viewer = MjViewer(sim) else: viewer = None sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, 0.06) for i in range(args.num_try): num_trial = num_trial + 1 # try n times for each test case sequence = get_action_sequence() print('\n\nAction sequence is: {}'.format(sequence)) result = run_openloop(args, robot, ACTIONS, sequence, 60, (fig, ax1, ax2, ax3)) if result['done']: num_success = num_success + 1 total_time = total_time + result['time'] print( 'Execution succeed, it took {} steps, num trail is {}, success rate is {}' .format(result['time'], num_trial, num_success / num_trial)) success_rate = float(num_success) / float(args.num_try) if num_success > 0: ave_time = float(total_time) / float(num_success) else: ave_time = 0 print( '\n\nTotal number of trails is: {}, success rate is: {}%, average time it took is: {}' .format(num_trial, success_rate * 100, ave_time)) print( '=======================================================================================\n\n\n\n\n\n\n' )
def main(args): num_test = len(test_xml_names) num_success = 0 num_trial = 0 total_time = 0 print(' ++++++++++++++++++++++++++') print(' +++ Now running case {} +++'.format(args.case)) print(' ++++++++++++++++++++++++++\n\n') for i in range(num_test): f = test_xml_names[i] if 'case{}'.format(args.case) in f: # one more trail for case1 num_trial = num_trial + 1 # print('Now testing {}'.format(f)) # load model and sim parameters model = load_model_from_path(os.path.join(test_xml_dir, f)) sim = MjSim(model) if args.render: viewer = MjViewer(sim) else: viewer = None sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, 0.05) # try n times for each test case action_mag = 0.05 actions = [ action_mag * np.array([1, 0, 0, 0, 0, 0]), action_mag * np.array([-1, 0, 0, 0, 0, 0]), action_mag * np.array([0, 1, 0, 0, 0, 0]), action_mag * np.array([0, -1, 0, 0, 0, 0]), action_mag * np.array([0, 0, 1, 0, 0, 0]), action_mag * np.array([0, 0, -1, 0, 0, 0]), ] result = run_closeloop(robot, action_mag, actions) if result['done']: num_success = num_success + 1 total_time = total_time + result['time'] print( 'Execution succeed, it took {} steps, num trail is {}, success rate is {}' .format(result['time'], num_trial, num_success / num_trial))
def main(args): test_xml = os.path.join(PARENT_DIR, 'models/flat_velcro.xml') # load model and sim parameters model = load_model_from_path(test_xml) sim = MjSim(model) if args.render: viewer = MjViewer(sim) else: viewer = None sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) act_mag = args.act_mag act_z = act_mag * np.array([0, 0, 1]) act_x = act_mag * np.array([1, 0, 0]) np.set_printoptions(suppress=True) fig, axes = plt.subplots(5, 2) success = [] N = args.num_increment for i in range(N): velcro_params = gripper_util.init_model(robot.mj_sim) theta = float(i + 1) / float(N) * 3.14159 action = math.sin(theta) * act_z + math.cos(theta) * act_x result = run_action(args, robot, action) print(i, result['done'], result['num_broken'], sim.data.sensordata[:]) if result['done']: success.append(1) else: success.append(0) axes[i // 2, i % 2].plot(result['tactile'][:, 0], 'r') axes[i // 2, i % 2].plot(result['tactile'][:, 1], 'g') axes[i // 2, i % 2].plot(result['tactile'][:, 2], 'b') axes[i // 2, i % 2].set_ylim(-800, 800) plt.pause(0.01)
def train_POMDP(self): args = self.args ROOT_DIR = os.path.dirname(os.path.dirname( os.path.abspath(__file__))) # corl2019 PARENT_DIR = os.path.dirname(ROOT_DIR) # reserach # Create the output directory if it does not exist output_dir = os.path.join(PARENT_DIR, 'multistep_pomdp', args.output_dir) if not os.path.isdir(output_dir): os.makedirs(output_dir) # write args to file with open(os.path.join(output_dir, 'args.txt'), 'w+') as f: json.dump(args.__dict__, f, indent=2) f.close() # Create our policy net and a target net self.policy_net_1 = DRQN(args.ftdim, args.outdim).to(args.device) self.policy_net_2 = DRQN(args.ftdim, args.outdim).to(args.device) if args.position: self.tactile_net_1 = TactileNet(args.indim - 6, args.ftdim).to(args.device) self.tactile_net_2 = TactileNet(args.indim - 6, args.ftdim).to(args.device) elif args.force: self.tactile_net_1 = TactileNet(args.indim - 390, args.ftdim).to(args.device) self.tactile_net_2 = TactileNet(args.indim - 390, args.ftdim).to(args.device) else: self.tactile_net_1 = TactileNet(args.indim, args.ftdim).to(args.device) self.tactile_net_2 = TactileNet(args.indim, args.ftdim).to(args.device) # Set up the optimizer self.policy_optimizer_1 = optim.RMSprop(self.policy_net_1.parameters(), lr=args.lr) self.policy_optimizer_2 = optim.RMSprop(self.policy_net_2.parameters(), lr=args.lr) self.tactile_optimizer_1 = optim.RMSprop( self.tactile_net_1.parameters(), lr=args.lr) self.tactile_optimizer_2 = optim.RMSprop( self.tactile_net_2.parameters(), lr=args.lr) self.memory = RecurrentMemory(800) self.steps_done = 0 # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs=args.indim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} start_episode = 0 if args.weight_policy: if os.path.exists(args.weight_policy): checkpoint = torch.load(args.weight_policy) self.policy_net_1.load_state_dict(checkpoint['policy_net_1']) self.policy_net_2.load_state_dict(checkpoint['policy_net_2']) self.policy_optimizer_1.load_state_dict( checkpoint['policy_optimizer_1']) self.policy_optimizer_2.load_state_dict( checkpoint['policy_optimizer_2']) start_episode = checkpoint['epochs'] self.steps_done = checkpoint['steps_done'] with open( os.path.join(os.path.dirname(args.weight_policy), 'results_pomdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) if args.memory: if os.path.exists(args.memory): self.memory.load(args.memory) if args.weight_tactile: checkpoint = torch.load(args.weight_tactile) self.tactile_net_1.load_state_dict(checkpoint['tactile_net_1']) self.tactile_optimizer_1.load_state_dict( checkpoint['tactile_optimizer_1']) self.tactile_net_2.load_state_dict(checkpoint['tactile_net_2']) self.tactile_optimizer_2.load_state_dict( checkpoint['tactile_optimizer_2']) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) tactile_obs_space = TactileObs( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 6 # Main training loop for ii in range(start_episode, args.epochs): self.steps_done += 1 start_time = time.time() act_sequence = [] act_length = [] velcro_params = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Local memory for current episode localMemory = [] # Get current observation hidden_state_1, cell_state_1 = self.policy_net_1.init_hidden_states( batch_size=1, device=args.device) hidden_state_2, cell_state_2 = self.policy_net_2.init_hidden_states( batch_size=1, device=args.device) broken_so_far = 0 # pick a random action initially action = random.randrange(0, 5) current_state = None next_state = None t = 0 while t < args.max_iter: if not args.quiet and t == 0: print("Running training episode: {}".format(ii, t)) if args.position: multistep_obs = np.empty((0, args.indim - 6)) elif args.force: multistep_obs = np.empty((0, args.indim - 390)) else: multistep_obs = np.empty((0, args.indim)) prev_action = action for k in range(args.len_ub): # Observe tactile features and stack them tactile_obs = tactile_obs_space.get_state() normalizer.observe(tactile_obs) tactile_obs = normalizer.normalize(tactile_obs) if args.position: tactile_obs = tactile_obs[6:] elif args.force: tactile_obs = tactile_obs[:6] multistep_obs = np.vstack((multistep_obs, tactile_obs)) # current jpos current_pos = robot.get_gripper_jpos()[:3] # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(robot.get_gripper_jpos()[:3], np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Observe new state tactile_obs_space.update( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30x6 displacement = la.norm(robot.get_gripper_jpos()[:3] - current_pos) if displacement / 0.06 < 0.7: break # input stiched multi-step tactile observation into tactile-net to generate tactile feature action, hidden_state_1, cell_state_1 = self.select_action( multistep_obs, hidden_state_1, cell_state_1) if t == 0: next_state = multistep_obs.copy() else: current_state = next_state.copy() next_state = multistep_obs.copy() # record actions in this epoch act_sequence.append(prev_action) act_length.append(k) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: if failure: reward = -20 else: reward = 0 t += k + 1 # Set max number of iterations if t >= self.max_iter: done = True if done or failure: next_state = None # Push new Transition into memory if t > k + 1: localMemory.append( Transition(current_state, prev_action, next_state, reward)) # Optimize the model if self.steps_done % 10 == 0: self.optimize() # If we are done, reset the model if done or failure: self.memory.push(localMemory) if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, "Training POMDP") print("Model parameters: {}".format(velcro_params)) print( "{} of Actions in this epoch are: {} \n Action length are: {}" .format(len(act_sequence), act_sequence, act_length)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join(output_dir, 'policy_' + str(ii) + '.pth') torch.save( { 'epochs': ii, 'steps_done': self.steps_done, 'policy_net_1': self.policy_net_1.state_dict(), 'policy_net_2': self.policy_net_2.state_dict(), 'policy_optimizer_1': self.policy_optimizer_1.state_dict(), 'policy_optimizer_2': self.policy_optimizer_2.state_dict(), }, save_path) save_path = os.path.join(output_dir, 'tactile_' + str(ii) + '.pth') torch.save( { 'tactile_net_1': self.tactile_net_1.state_dict(), 'tactile_net_2': self.tactile_net_2.state_dict(), 'tactile_optimizer_1': self.tactile_optimizer_1.state_dict(), 'tactile_optimizer_2': self.tactile_optimizer_2.state_dict(), }, save_path) write_results(os.path.join(output_dir, 'results_pomdp.pkl'), print_variables) self.memory.save_memory( os.path.join(output_dir, 'memory.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}.png'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables
def main(args): if not os.path.isdir(args.result_dir): os.makedirs(args.result_dir) parent = os.path.dirname(os.path.abspath(__file__)) # load test xml files test_file = os.path.join(parent, 'tests/test_xmls/temp_1_{}.pickle'.format(args.case)) params = pickle.load(open(test_file, 'rb')) # params = params[:6] if args.shuffle: random.shuffle(params) num_test = len(params) print(' ++++++++++++++++++++++++++') print(' +++ Now running case {} +++'.format(args.case)) print(' ++++++++++++++++++++++++++\n\n') policy_net = DRQN(args.indim, args.outdim) policy_net.load_state_dict(torch.load(args.weight_path)['policy_net_1']) policy_net.eval() # load normalizer # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs = args.indim, device=args.device) if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) tactile_obs_space = TactileObs(robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 6 performance = {'time':[], 'success':[], 'num_broken':[], 'tendon_hist':[0,0,0,0,0], 'collision':[], 'action_hist': [0,0,0,0,0,0]} for i in range(num_test): velcro_params = params[i] geom, origin_offset, euler, radius = velcro_params print('\n\nTest {} Velcro parameters are: {}, {}, {}, {}'.format(i, geom, origin_offset, euler, radius)) change_sim(robot.mj_sim, geom, origin_offset, euler, radius) robot.reset_simulation() ret = robot.grasp_handle() performance = test_network(args, policy_net, normalizer, robot, tactile_obs_space, performance) print('Success: {}, time: {}, num_broken: {}, collision:{} '.format( performance['success'][-1], performance['time'][-1], performance['num_broken'][-1], performance['collision'][-1])) print('Finished opening velcro with haptics test \n') success = np.array(performance['success']) time = np.array(performance['time']) print('Successfully opened the velcro in: {}% of cases'.format(100 * np.sum(success) / len(performance['success']))) print('Average time to open: {}'.format(np.average(time[success>0]))) print('Action histogram for the test is: {}'.format(performance['action_hist'])) out_fname = 'case{}.txt'.format(args.case) with open(os.path.join(args.result_dir, out_fname), 'w+') as f: f.write('Time: {}\n'.format(performance['time'])) f.write('Success: {}\n'.format(performance['success'])) f.write('Successfully opened the velcro in: {}% of cases\n'.format(100 * np.sum(success) / len(performance['success']))) f.write('Average time to open: {}\n'.format(np.average(time[success>0]))) f.write('Num_broken: {}\n'.format(performance['num_broken'])) f.write('Tendon histogram: {}\n'.format(performance['tendon_hist'])) f.write('collision: {}\n'.format(performance['collision'])) # f.write('high_success: {} low_success: {} '.format(high_success, low_success)) f.close()
def main(args): policy_net = Geom_DQN(args.indim, args.outdim).to(args.device) policy_net.load_state_dict(torch.load(args.weight_expert)['policy_net_1']) policy_net.eval() normalizer = Geom_Normalizer(args.indim, device=args.device) normalizer.restore_state(args.norm_expert) tactile_normalizer = Multimodal_Normalizer(num_inputs = args.tactile_indim, device=args.device) tactile_normalizer.restore_state(args.tactile_normalizer) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None # load all velcro parameters model_dir = os.path.dirname(args.model_path) param_path = os.path.join(model_dir, 'uniform_sample.pkl') velcro_params = pickle.load(open(param_path, 'rb')) robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) velcro_util = VelcroUtil(robot, robot.mj_sim_param) traj_logger = TrajLogger(args, robot, velcro_util, policy_net, normalizer, tactile_normalizer) all_trajectories = [] all_success = [None for i in range(len(velcro_params))] all_time = [None for i in range(len(velcro_params))] for i in range(len(velcro_params)): geom_type, origin_offset, euler, radius = velcro_params[i] change_sim(robot.mj_sim, geom_type, origin_offset, euler, radius) performance = {'time':[], 'success':[], 'action_hist':[0,0,0,0,0,0]} min_time = args.max_iter all_trajectories.append(None) for j in range(args.num_try): robot.reset_simulation() ret = robot.grasp_handle() performance, expert_traj = traj_logger.test_network(performance) if performance['time'][-1] <= min_time: all_trajectories[i] = expert_traj min_time = performance['time'][-1] all_success[i] = performance['success'][j] all_time[i] = performance['time'][-1] print('\n\nFinished trajectory {}'.format(i)) print('Velcro parameters are:{} {} {} {}'.format(geom_type, origin_offset, euler, radius)) print(performance) success = np.array(performance['success']) time = np.array(performance['time']) print('Successfully opened the velcro in: {}% of cases'.format(100 * np.sum(success) / len(performance['success']))) print('Average time to open: {}'.format(np.average(time[success>0]))) print('Action histogram for the test is: {}'.format(performance['action_hist'])) print('\nCollected {} successful expert trajectories in total'.format(np.sum(np.array(all_success)))) print('Total success and time: {}, {}'.format(all_success, all_time)) output = {'args': args, 'traj': all_trajectories, 'success': all_success, 'all_time': all_time} output_path = args.result_dir + 'oneshot_expert_traj.pkl' write_results(output_path, output)
def reset(self): args = self.args model, self.model_params = init_model(args.model_path, geom=False) sim = MjSim(model) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) self.robot = robot robot.reset_simulation() ret = robot.grasp_handle() if not ret: return None self.obs_space = Observation(robot.get_gripper_jpos(), robot.get_num_broken_buffer(args.hap_sample), robot.get_main_touch_buffer(args.hap_sample)) # Get current observation self.broken_so_far = 0 self.obs_space.update(robot.get_gripper_jpos(), # 6 robot.get_num_broken_buffer(args.hap_sample), # 30x1 robot.get_main_touch_buffer(args.hap_sample)) # 30x12 obs = self.obs_space.get_state() reward = 0 done = False info = {'slippage': False} return obs, reward, done, info
def main(args): if not os.path.isdir(args.result_dir): os.makedirs(args.result_dir) conv_net = ConvNet(args.outdim, args.depth).to(args.device) if os.path.exists(args.weight_convnet): checkpoint = torch.load(args.weight_convnet) conv_net.load_state_dict(checkpoint['conv_net']) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) # load all velcro parameters # model_dir = os.path.dirname(args.model_path) # param_path = os.path.join(model_dir, 'uniform_sample.pkl') param_path = '/home/jc/research/corl2019_learningHaptics/tests/test_xmls/case_{}.pickle'.format( args.case) velcro_params = pickle.load(open(param_path, 'rb')) if args.shuffle: random.shuffle(velcro_params) velcro_util = VelcroUtil(robot, sim_param) state_space = Observation( robot.get_gripper_jpos(), # 6 velcro_util.break_center(), # 6 velcro_util.break_norm()) action_space = ActionSpace(dp=0.06, df=10) performance = { 'time': [], 'success': [], 'num_broken': [], 'tendon_hist': [0, 0, 0, 0, 0] } for n, item in enumerate(velcro_params): geom_type, origin_offset, euler, radius = item print('\n\nTest {} Velcro parameters are: {}, {}, {}, {}'.format( n, geom_type, origin_offset, euler, radius)) change_sim(robot.mj_sim, geom_type, origin_offset, euler, radius) robot.reset_simulation() ret = robot.grasp_handle() broken_so_far = 0 # ax.clear() for t in range(args.max_iter): # take image an predict norm direction # Get image and normalize it img = robot.get_img(args.img_w, args.img_h, 'c1', args.depth) if args.depth: depth = norm_depth(img[1]) img = norm_img(img[0]) img_norm = np.empty((4, args.img_w, args.img_h)) img_norm[:3, :, :] = img img_norm[3, :, :] = depth else: img_norm = norm_img(img) torch_img = torch.from_numpy(img_norm).float().to( args.device).unsqueeze(0) pred = conv_net.forward(torch_img).detach().cpu() fl_norm = pred[0][3:6].numpy() break_dir_norm = pred[0][6:9].numpy() # normalize these vectors fl_norm = fl_norm / la.norm(fl_norm) break_dir_norm = break_dir_norm / la.norm(break_dir_norm) ################ choose action and get action direction vector ################ action_direction = args.act_mag * (-0.5 * fl_norm + 0.5 * break_dir_norm) action_key = (action_vec @ action_direction).argmax() action_direction = action_space.get_action( ACTIONS[action_key])['delta'][:3] gripper_pose = robot.get_gripper_jpos()[:3] # Perform action target_position = np.add(robot.get_gripper_jpos()[:3], action_direction) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, 300, hap_sample=30) # check tendons and slippage done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: broken_so_far = num if done or failure: ratio_broken = float(num) / float(NUM_TENDON) if ratio_broken < 0.2: performance['tendon_hist'][0] += 1 elif ratio_broken >= 0.2 and ratio_broken < 0.4: performance['tendon_hist'][1] += 1 elif ratio_broken >= 0.4 and ratio_broken < 0.6: performance['tendon_hist'][2] += 1 elif ratio_broken >= 0.6 and ratio_broken < 0.8: performance['tendon_hist'][3] += 1 else: performance['tendon_hist'][4] += 1 performance['num_broken'].append(num) if done: performance['success'].append(1) performance['time'].append(t + 1) if failure: performance['success'].append(0) performance['time'].append(t + 1) break if t == args.max_iter - 1: ################## exceed max iterations #################### performance['success'].append(0) performance['time'].append(args.max_iter) ratio_broken = float(num) / float(NUM_TENDON) performance['num_broken'].append(num) if ratio_broken < 0.2: performance['tendon_hist'][0] += 1 elif ratio_broken >= 0.2 and ratio_broken < 0.4: performance['tendon_hist'][1] += 1 elif ratio_broken >= 0.4 and ratio_broken < 0.6: performance['tendon_hist'][2] += 1 elif ratio_broken >= 0.6 and ratio_broken < 0.8: performance['tendon_hist'][3] += 1 else: performance['tendon_hist'][4] += 1 # print episode performance print('Success: {}, time: {}, num_broken: {} '.format( performance['success'][-1], performance['time'][-1], performance['num_broken'][-1])) print('Finished opening velcro with haptics test \n') success = np.array(performance['success']) time = np.array(performance['time']) print('Successfully opened the velcro in: {}% of cases'.format( 100 * np.sum(success) / len(performance['success']))) print('Average time to open: {}'.format(np.average(time[success > 0]))) out_fname = 'vision_case{}.txt'.format(args.case) with open(os.path.join(args.result_dir, out_fname), 'w+') as f: f.write('Time: {}\n'.format(performance['time'])) f.write('Success: {}\n'.format(performance['success'])) f.write('Successfully opened the velcro in: {}% of cases\n'.format( 100 * np.sum(success) / len(performance['success']))) f.write('Average time to open: {}\n'.format( np.average(time[success > 0]))) f.write('Num_broken: {}\n'.format(performance['num_broken'])) f.write('Tendon histogram: {}\n'.format(performance['tendon_hist'])) f.close()
def main(args): # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) # load all velcro parameters model_dir = os.path.dirname(args.model_path) param_path = os.path.join(model_dir, 'uniform_sample.pkl') velcro_params = pickle.load(open(param_path, 'rb')) velcro_util = VelcroUtil(robot, sim_param) state_space = Observation( robot.get_gripper_jpos(), # 6 velcro_util.break_center(), # 6 velcro_util.break_norm()) action_space = ActionSpace(dp=0.06, df=10) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.clear() for item in VELCRO_PARAMS: geom_type, origin_offset, euler, radius = item print('Velcro parameters are: {}, {}, {}, {}'.format( geom_type, origin_offset, euler, radius)) change_sim(robot.mj_sim, geom_type, origin_offset, euler, radius) robot.reset_simulation() ret = robot.grasp_handle() broken_so_far = 0 ax.clear() for i in range(args.max_iter): # check velcro breakline geometry norms = velcro_util.break_norm() centers = velcro_util.break_center() fl_center = centers[:3] fs_center = centers[3:] fl_norm = norms[:3] fs_norm = norms[3:6] fs_center = centers[3:] break_dir_norm = norms[6:9] action_direction = args.act_mag * (-0.5 * fl_norm + 0.5 * break_dir_norm) gripper_pose = robot.get_gripper_jpos()[:3] # Perform action target_position = np.add(robot.get_gripper_jpos()[:3], action_direction) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, 300, hap_sample=30) ax.scatter(fl_center[0], fl_center[1], fl_center[2], c='r', marker='o') ax.scatter(fs_center[0], fs_center[1], fs_center[2], c='r', marker='o') X, Y, Z = lines(fl_center, fl_norm) ax.plot(X, Y, Z, c='b') X, Y, Z = lines(fs_center, fs_norm) ax.plot(X, Y, Z, c='b') # plot gripper position and action direction ax.scatter(gripper_pose[0], gripper_pose[1], gripper_pose[2], c='r', marker='v') X, Y, Z = lines(gripper_pose, action_direction / args.act_mag) ax.plot(X, Y, Z, c='g') plt.pause(0.001) # check tendons and slippage done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: broken_so_far = num if done or failure: break
def train_MDP(self): args = self.args # Create the output directory if it does not exist if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) # Create our policy net and a target net self.policy_net_1 = DQN(args.indim, args.outdim).to(args.device) self.policy_net_2 = DQN(args.indim, args.outdim).to(args.device) self.policy_net_3 = DQN(args.indim, args.outdim).to(args.device) self.target_net = DQN(args.indim, args.outdim).to(args.device) self.target_net.load_state_dict(self.policy_net_1.state_dict()) self.target_net.eval() # Set up the optimizer self.optimizer_1 = optim.RMSprop(self.policy_net_1.parameters(), args.lr) self.optimizer_2 = optim.RMSprop(self.policy_net_2.parameters(), args.lr) self.optimizer_3 = optim.RMSprop(self.policy_net_3.parameters(), args.lr) self.memory = ReplayMemory(500000) self.steps_done = 0 # Setup the state normalizer normalizer = Normalizer(args.indim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} # Load old checkpoint if provided start_episode = 0 if args.checkpoint_file: if os.path.exists(args.checkpoint_file): checkpoint = torch.load(args.checkpoint_file) self.policy_net_1.load_state_dict( checkpoint['model_state_dict']) self.policy_net_2.load_state_dict( checkpoint['model_state_dict']) self.policy_net_3.load_state_dict( checkpoint['model_state_dict']) self.target_net.load_state_dict(checkpoint['model_state_dict']) start_episode = checkpoint['epoch'] self.steps_done = start_episode self.optimizer_1.load_state_dict( checkpoint['optimizer_state_dict']) self.optimizer_2.load_state_dict( checkpoint['optimizer_state_dict']) self.optimizer_3.load_state_dict( checkpoint['optimizer_state_dict']) with open( os.path.join(os.path.dirname(args.checkpoint_file), 'results_geom_mdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) action_space = ActionSpace(dp=0.06, df=10) # Main training loop for ii in range(start_episode, args.epochs): start_time = time.time() if args.sim: # Create robot, reset simulation and grasp handle model, model_params = init_model(args.model_path) sim = MjSim(model) sim.step() viewer = None if args.render: viewer = MjViewer(sim) else: viewer = None sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, self.breaking_threshold) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Get current state state_space = Observation( robot.get_gripper_jpos(), robot.get_shear_buffer(args.hap_sample), robot.get_all_touch_buffer(args.hap_sample)) broken_so_far = 0 for t in count(): if not args.quiet and t % 20 == 0: print("Running training episode: {}, iteration: {}".format( ii, t)) # Select action state = state_space.get_state() if args.position: state = state[6:] if args.shear: indices = np.ones(len(state), dtype=bool) indices[6:166] = False state = state[indices] if args.force: state = state[:166] normalizer.observe(state) state = normalizer.normalize(state) action = self.select_action(state) # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(state_space.get_current_position(), np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) if args.sim: robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: reward = 0 # # Add a movement reward # reward -= 0.1 * np.linalg.norm(target_position - robot.get_gripper_jpos()[:3]) / np.linalg.norm(delta) # Observe new state state_space.update( robot.get_gripper_jpos(), robot.get_shear_buffer(args.hap_sample), robot.get_all_touch_buffer(args.hap_sample)) # Set max number of iterations if t >= self.max_iter: done = True # Check if done if not done and not failure: next_state = state_space.get_state() if args.position: next_state = next_state[6:] if args.shear: indices = np.ones(len(next_state), dtype=bool) indices[6:166] = False next_state = next_state[indices] if args.force: next_state = next_state[:166] normalizer.observe(next_state) next_state = normalizer.normalize(next_state) else: next_state = None # Push new Transition into memory self.memory.push(state, action, next_state, reward) # Optimize the model loss = self.optimize_model() # if loss: # print_variables['loss'].append(loss.item()) # If we are done, reset the model if done or failure: if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, 'Training MDP') print("Model parameters: {}".format(model_params)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Update the target network, every x iterations if ii % 10 == 0: self.target_net.load_state_dict(self.policy_net_1.state_dict()) # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join( args.output_dir, 'checkpoint_model_' + str(ii) + '.pth') torch.save( { 'epoch': ii, 'model_state_dict': self.target_net.state_dict(), 'optimizer_state_dict': self.optimizer_1.state_dict(), }, save_path) # Save normalizer state for inference normalizer.save_state( os.path.join(args.output_dir, 'normalizer_state.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables
def train_POMDP(self): args = self.args ROOT_DIR = os.path.dirname(os.path.dirname( os.path.abspath(__file__))) # corl2019 PARENT_DIR = os.path.dirname(ROOT_DIR) # reserach # Create the output directory if it does not exist output_dir = os.path.join(PARENT_DIR, 'multistep_pomdp', args.output_dir) if not os.path.isdir(output_dir): os.makedirs(output_dir) # write args to file with open(os.path.join(output_dir, 'args.txt'), 'w+') as f: json.dump(args.__dict__, f, indent=2) f.close() # Create our policy net and a target net self.policy_net_1 = DRQN(args.indim, args.outdim).to(args.device) self.policy_net_2 = DRQN(args.indim, args.outdim).to(args.device) self.policy_net_3 = DRQN(args.indim, args.outdim).to(args.device) # Set up the optimizer self.optimizer_1 = optim.RMSprop(self.policy_net_1.parameters()) self.optimizer_2 = optim.RMSprop(self.policy_net_2.parameters()) self.optimizer_3 = optim.RMSprop(self.policy_net_3.parameters()) self.memory = RecurrentMemory(800) self.steps_done = 0 # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs=args.indim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} start_episode = 0 if args.checkpoint_file: if os.path.exists(args.checkpoint_file): checkpoint = torch.load(args.checkpoint_file) self.policy_net_1.load_state_dict(checkpoint['policy_net_1']) self.policy_net_2.load_state_dict(checkpoint['policy_net_2']) self.policy_net_3.load_state_dict(checkpoint['policy_net_3']) self.optimizer_1.load_state_dict(checkpoint['optimizer_1']) self.optimizer_2.load_state_dict(checkpoint['optimizer_2']) self.optimizer_3.load_state_dict(checkpoint['optimizer_3']) start_episode = checkpoint['epochs'] self.steps_done = checkpoint['steps_done'] with open( os.path.join(os.path.dirname(args.checkpoint_file), 'results_pomdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) if args.memory: if os.path.exists(args.memory): self.memory.load(args.memory) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) # Main training loop for ii in range(start_episode, args.epochs): start_time = time.time() self.steps_done += 1 act_sequence = [] if args.sim: sim_params = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Local memory for current episode localMemory = [] # Get current observation hidden_state_1, cell_state_1 = self.policy_net_1.init_hidden_states( batch_size=1, device=args.device) hidden_state_2, cell_state_2 = self.policy_net_2.init_hidden_states( batch_size=1, device=args.device) hidden_state_3, cell_state_3 = self.policy_net_3.init_hidden_states( batch_size=1, device=args.device) observation_space = TactileObs( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 7 broken_so_far = 0 for t in count(): if not args.quiet and t % 50 == 0: print("Running training episode: {}, iteration: {}".format( ii, t)) # Select action observation = observation_space.get_state() if args.position: observation = observation[6:] if args.shear: indices = np.ones(len(observation), dtype=bool) indices[6:166] = False observation = observation[indices] if args.force: observation = observation[:166] normalizer.observe(observation) observation = normalizer.normalize(observation) action, hidden_state_1, cell_state_1 = self.select_action( observation, hidden_state_1, cell_state_1) # record actions in this epoch act_sequence.append(action) # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(robot.get_gripper_jpos()[:3], np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) if args.sim: robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: reward = 0 # # Add a movement reward # reward -= 0.05 * np.linalg.norm(target_position - robot.get_gripper_jpos()[:3]) / np.linalg.norm(delta) # Observe new state observation_space.update( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30x7 # Set max number of iterations if t >= self.max_iter: done = True # Check if done if not done and not failure: next_state = observation_space.get_state() if args.position: next_state = next_state[6:] if args.shear: indices = np.ones(len(next_state), dtype=bool) indices[6:166] = False next_state = next_state[indices] if args.force: next_state = next_state[:166] normalizer.observe(next_state) next_state = normalizer.normalize(next_state) else: next_state = None # Push new Transition into memory localMemory.append( Transition(observation, action, next_state, reward)) # Optimize the model if t % 10 == 0: loss = self.optimize_model() # if loss: # print_variables['loss'].append(loss.item()) # If we are done, reset the model if done or failure: self.memory.push(localMemory) if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, "Training POMDP") print("Model parameters: {}".format(sim_params)) print("Actions in this epoch are: {}".format(act_sequence)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join( output_dir, 'checkpoint_model_' + str(ii) + '.pth') torch.save( { 'epochs': ii, 'steps_done': self.steps_done, 'policy_net_1': self.policy_net_1.state_dict(), 'policy_net_2': self.policy_net_2.state_dict(), 'policy_net_3': self.policy_net_3.state_dict(), 'optimizer_1': self.optimizer_1.state_dict(), 'optimizer_2': self.optimizer_2.state_dict(), 'optimizer_3': self.optimizer_3.state_dict(), }, save_path) self.memory.save_memory(os.path.join(output_dir, 'memory.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}.png'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables
# ###################### TEST CHANGE MODEL RADIUS # sim_ref = MjSim(model) # for i in range(3): # radius = 0.5 * (i+1) # change_model_radius(sim, sim_param, radius=radius) # sim.reset() # for j in range(10000): # sim.step() # viewer.render() # ##################### END OF CHANGE MODEL RADIUS model_path = '/home/jc/research/corl2019_learningHaptics/models/flat_velcro.xml' model, sim, viewer = load_model(model_path) sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, True, 0.06) for i in range(3): radius = 0.5 * (i + 1) change_sim(sim, 'cylinder', [0.2, -0.5, 0], [0.2, 0, 1], radius) sim.reset() for j in range(2000): sim.step() viewer.render() change_sim(sim, 'flat', [0.2, -0.5, 0], [0, .2, 0.5]) for j in range(2000): sim.step() viewer.render()
import numpy as np import matplotlib.pyplot as plt import math PARENT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, PARENT_DIR) from utils.gripper_util import * from sim_param import SimParameter from robot_sim import RobotSim model_path = os.path.join(PARENT_DIR, 'models/flat_velcro.xml') model, sim, viewer= load_model(model_path) sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, True, 0.06) np.set_printoptions(suppress=True) for i in range(3): change_sim(sim, 'flat',[0.2, -0.5, 0], [0, 0.3, 0.5]) robot.reset_simulation() robot.grasp_handle() sim.data.ctrl[sim_param.gripper_pos_ctrl_id] = np.array([0, 0, 0.5, 0, 0, 0]) sim.data.ctrl[sim_param.gripper_vel_ctrl_id] = np.array([0, 0, 0.5, 0, 0, 0]) for i in range(1000): robot.mj_simulation_step() viewer.render() for j in range(20000): viewer.render()
def train_POMDP(self): args = self.args # Create the output directory if it does not exist if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) # Create our policy net and a target net self.policy_net_1 = DRQN(args.indim, args.outdim).to(args.device) self.policy_net_2 = DRQN(args.indim, args.outdim).to(args.device) self.conv_net_1 = ConvNet(args.ftdim, args.depth).to(args.device) self.conv_net_2 = ConvNet(args.ftdim, args.depth).to(args.device) # Set up the optimizer self.policy_optimizer_1 = optim.RMSprop(self.policy_net_1.parameters(), lr=args.lr) self.policy_optimizer_2 = optim.RMSprop(self.policy_net_2.parameters(), lr=args.lr) self.conv_optimizer_1 = optim.RMSprop(self.conv_net_1.parameters(), lr=1e-5) self.conv_optimizer_2 = optim.RMSprop(self.conv_net_2.parameters(), lr=1e-5) self.memory = RecurrentMemory(70) self.steps_done = 0 # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs=args.indim - args.ftdim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} start_episode = 0 if args.checkpoint_file: if os.path.exists(args.checkpoint_file): checkpoint = torch.load(args.checkpoint_file) self.policy_net_1.load_state_dict(checkpoint['policy_net_1']) self.policy_net_2.load_state_dict(checkpoint['policy_net_2']) self.conv_net_1.load_state_dict(checkpoint['conv_net_1']) self.conv_net_2.load_state_dict(checkpoint['conv_net_2']) self.policy_optimizer_1.load_state_dict( checkpoint['policy_optimizer_1']) self.policy_optimizer_2.load_state_dict( checkpoint['policy_optimizer_2']) self.conv_optimizer_1.load_state_dict( checkpoint['conv_optimizer_1']) self.conv_optimizer_2.load_state_dict( checkpoint['conv_optimizer_2']) start_episode = checkpoint['epoch'] self.steps_done = checkpoint['steps_done'] with open( os.path.join(os.path.dirname(args.checkpoint_file), 'results_pomdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) if args.memory: if os.path.exists(args.memory): self.memory.load(args.memory) if args.weight_conv: checkpoint = torch.load(args.weight_conv) self.conv_net_1.load_state_dict(checkpoint['conv_net']) self.conv_optimizer_1.load_state_dict(checkpoint['conv_optimizer']) self.conv_net_2.load_state_dict(checkpoint['conv_net']) self.conv_optimizer_2.load_state_dict(checkpoint['conv_optimizer']) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) tactile_obs_space = TactileObs( robot.get_gripper_jpos(), # 6 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 12 # Main training loop for ii in range(start_episode, args.epochs): start_time = time.time() act_sequence = [] velcro_params = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Local memory for current episode localMemory = [] # Get current observation hidden_state_1, cell_state_1 = self.policy_net_1.init_hidden_states( batch_size=1, device=args.device) hidden_state_2, cell_state_2 = self.policy_net_2.init_hidden_states( batch_size=1, device=args.device) broken_so_far = 0 for t in count(): if not args.quiet and t % 50 == 0: print("Running training episode: {}, iteration: {}".format( ii, t)) # Select action tactile_obs = tactile_obs_space.get_state() normalizer.observe(tactile_obs) tactile_obs = normalizer.normalize(tactile_obs) # Get image and normalize it img = robot.get_img(args.img_w, args.img_h, 'c1', args.depth) if args.depth: depth = norm_depth(img[1]) img = norm_img(img[0]) img_norm = np.empty((4, args.img_w, args.img_h)) img_norm[:3, :, :] = img img_norm[3, :, :] = depth else: img_norm = norm_img(img) observation = [tactile_obs, img_norm] action, hidden_state_1, cell_state_1 = self.select_action( observation, hidden_state_1, cell_state_1) # record actions in this epoch act_sequence.append(action) # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(robot.get_gripper_jpos()[:3], np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: reward = 0 # Observe new state tactile_obs_space.update( robot.get_gripper_jpos(), # 6 robot.get_all_touch_buffer(args.hap_sample)) # 30x12 # Set max number of iterations if t >= self.max_iter: done = True # Check if done if not done and not failure: next_tactile_obs = tactile_obs_space.get_state() normalizer.observe(next_tactile_obs) next_tactile_obs = normalizer.normalize(next_tactile_obs) # Get image and normalize it next_img = robot.get_img(args.img_w, args.img_h, 'c1', args.depth) if args.depth: next_depth = norm_depth(next_img[1]) next_img = norm_img(next_img[0]) next_img_norm = np.empty((4, args.img_w, args.img_h)) next_img_norm[:3, :, :] = next_img next_img_norm[3, :, :] = next_depth else: next_img_norm = norm_img(next_img) next_state = [next_tactile_obs, next_img_norm] else: next_state = None # Push new Transition into memory localMemory.append( Transition(observation, action, next_state, reward)) # Optimize the model if self.steps_done % 10 == 0: self.optimize() # If we are done, reset the model if done or failure: self.memory.push(localMemory) if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, "Training POMDP") print("Model parameters: {}".format(velcro_params)) print("Actions in this epoch are: {}".format(act_sequence)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join( args.output_dir, 'checkpoint_model_' + str(ii) + '.pth') torch.save( { 'epochs': ii, 'steps_done': self.steps_done, 'conv_net_1': self.conv_net_1.state_dict(), 'conv_net_2': self.conv_net_2.state_dict(), 'policy_net_1': self.policy_net_1.state_dict(), 'policy_net_2': self.policy_net_2.state_dict(), 'conv_optimizer_1': self.conv_optimizer_1.state_dict(), 'conv_optimizer_2': self.conv_optimizer_2.state_dict(), 'policy_optimizer_1': self.policy_optimizer_1.state_dict(), 'policy_optimizer_2': self.policy_optimizer_2.state_dict(), }, save_path) # Save normalizer state for inference normalizer.save_state( os.path.join(args.output_dir, 'normalizer_state.pickle')) self.memory.save_memory(os.path.join(args.output_dir, 'memory.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}.png'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables
# import modules import math import time from robot_sim import RobotSim from ekf import EKF # robot simulation parameters start_x = 0.0 start_y = 0.0 start_yaw = 0.0 * math.pi / 180.0 max_measurement_range = 10.0 measurement_range_variance_sim = 0.2 * 0.2 measurement_angle_variance_sim = 3.0 * math.pi / 180.0 * 3.0 * math.pi / 180.0 # initialize the robot simulator robot_sim = RobotSim(start_x, start_y, start_yaw) robot_sim.add_landmark(2.0, 2.0) robot_sim.add_landmark(4.0, -4.0) robot_sim.add_landmark(-2.0, -2.0) robot_sim.add_landmark(-4.0, 4.0) robot_sim.set_odom_noises(0.33, 0.1, 0.1, 0.33) robot_sim.set_max_measurement_range(max_measurement_range) robot_sim.set_measurement_variances(measurement_range_variance_sim, measurement_angle_variance_sim) robot_sim.set_plot_sizes(max_measurement_range, max_measurement_range) robot_sim.set_random_measurement_rate(0.05) robot_sim.set_sim_time_step(0.1) # ekf parameters measurement_range_variance = 0.3 * 0.3 measurement_angle_variance = 5.0 * math.pi / 180.0 * 5.0 * math.pi / 180.0
def main(args): test_xml_names = [] test_xml_dir = os.path.join(parent, 'tests/test_xmls/') for file in os.listdir(test_xml_dir): if 'case' in file: test_xml_names.append(file) np.set_printoptions(suppress=True) num_test = len(test_xml_names) num_success = 0 num_trial = 0 total_time = 0 act_mag = args.act_mag actions = [ act_mag * np.array([1, 0, 0, 0, 0, 0]), act_mag * np.array([-1, 0, 0, 0, 0, 0]), act_mag * np.array([0, 1, 0, 0, 0, 0]), act_mag * np.array([0, -1, 0, 0, 0, 0]), act_mag * np.array([0, 0, 1, 0, 0, 0]), act_mag * np.array([0, 0, -1, 0, 0, 0]) ] tendon_histogram = [0, 0, 0, 0] print(' ++++++++++++++++++++++++++') print(' +++ Now running case {} +++'.format(args.case)) print(' +++ Num try per case {} +++'.format( args.num_try)) print(' ++++++++++++++++++++++++++\n\n') for i in range(num_test): f = test_xml_names[i] if 'case{}'.format(args.case) in f: # one more trail for case1 num_trial = num_trial + 1 # print('Now testing {}'.format(f)) # load model and sim parameters model = load_model_from_path(os.path.join(test_xml_dir, f)) sim = MjSim(model) if args.render: viewer = MjViewer(sim) else: viewer = None sim_param = SimParameter(sim) robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) # try n times for each test case for j in range(args.num_try): result = run_reward_greedy(args, robot, actions) print('Total number of broken tendon is: {}'.format( result['num_broken'])) ratio_broken = float(result['num_broken']) / float( args.num_tendon) if ratio_broken < 0.25: tendon_histogram[0] += 1 elif ratio_broken >= 0.25 and ratio_broken < 0.5: tendon_histogram[1] += 1 elif ratio_broken >= 0.5 and ratio_broken < 0.75: tendon_histogram[2] += 1 else: tendon_histogram[3] += 1 if result['done']: num_success = num_success + 1 total_time = total_time + result['time'] print( 'Execution succeed, it took {} steps, num trail is {}, success rate is {}' .format(result['time'], num_trial, num_success / num_trial)) break