], [np.mean(image_std[-3:]).tolist()] if __name__ == '__main__': # train on the GPU or on the CPU, if a GPU is not available device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') device = torch.device('cuda:0') # our dataset has three classes only - background, non-damaged, and damaged num_classes = 2 input_c = 1 # use our dataset and defined transformations dataset = Dataset("./datasets/iros/bishop/aug/", transforms=get_transform(train=True), include_name=False, input_channel=input_c) ##dataset_test = Dataset("./datasets/Rock/data_test/", transforms=get_transform(train=False), include_name=False, input_channel=input_c) #dataset_test = Dataset("./datasets/Rock_test/mult/", transforms=get_transform(train=False), include_name=False, input_channel=input_c) dataset_test = Dataset("./datasets/iros/bishop_test/mult_masks/", transforms=get_transform(train=False), include_name=False, input_channel=input_c) # image_mean, image_std, _, _ = dataset.imageStat() image_mean = [ 0.2635908247051704, 0.2565450032962188, 0.24311759802366928, 0.3007502338171828, 0.35368477144149774, 0.35639093071269307, 0.5402165474345183, 0.24508291731782375 ] image_std = [ 0.14736204788409055, 0.13722317885795837, 0.12990199087409235,
elif input_channel == 'dem': return image_mean[-3:], image_std[-3:] if __name__ == '__main__': # train on the GPU or on the CPU, if a GPU is not available device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') device = torch.device('cuda:1') # our dataset has three classes only - background, non-damaged, and damaged num_classes = 2 input_c = 3 dataset_test = Dataset("./datasets/Rock/mult_10/", transforms=get_transform(train=False), include_name=True, input_channel=input_c) # dataset = Dataset("./datasets/Rock_test/mult/", transforms=get_transform(train=True), input_channel=8) # image_mean, image_std, _, _ = dataset.imageStat() image_mean = [ 0.23924888725523394, 0.2180423480395164, 0.2118836715688813, 0.26721142156890876, 0.32996910784324385, 0.1461123186277879, 0.5308107499991753, 0.28652559313771186 ] image_std = [ 0.1459739643338365, 0.1311105424825076, 0.12715888419418298, 0.149469170605332, 0.15553466224696225, 0.10533129832132752, 0.24088403135495345, 0.24318892151508417 ] image_mean, image_std = get_mean_std(input_c, image_mean, image_std)