Esempio n. 1
0
def main(
    data_path,
    fea_path,
    task,
    loss,
    robust,
    model_name="cgcnn",
    elem_fea_len=64,
    n_graph=4,
    n_hidden=1,
    h_fea_len=128,
    ensemble=1,
    run_id=1,
    seed=42,
    epochs=100,
    log=True,
    sample=1,
    test_size=0.2,
    test_path=None,
    val_size=0.0,
    val_path=None,
    resume=None,
    fine_tune=None,
    transfer=None,
    train=True,
    evaluate=True,
    optim="AdamW",
    learning_rate=3e-4,
    momentum=0.9,
    weight_decay=1e-6,
    batch_size=128,
    workers=0,
    device=torch.device("cuda")
    if torch.cuda.is_available() else torch.device("cpu"),
    **kwargs,
):
    assert (
        evaluate or train
    ), "No task given - Set at least one of 'train' or 'evaluate' kwargs as True"
    assert task in [
        "regression",
        "classification",
    ], "Only 'regression' or 'classification' allowed for 'task'"

    if test_path:
        test_size = 0.0

    if not (test_path and val_path):
        assert test_size + val_size < 1.0, (
            f"'test_size'({test_size}) "
            f"plus 'val_size'({val_size}) must be less than 1")

    if ensemble > 1 and (fine_tune or transfer):
        raise NotImplementedError(
            "If training an ensemble with fine tuning or transfering"
            " options the models must be trained one by one using the"
            " run-id flag.")

    assert not (
        fine_tune and transfer
    ), "Cannot fine-tune and transfer checkpoint(s) at the same time."

    if transfer:
        raise NotImplementedError(
            "Transfer option not available for CGCNN in order to stay "
            "faithful to the original implementation.")

    dist_dict = {
        "max_num_nbr": 12,
        "radius": 8,
        "dmin": 0,
        "step": 0.2,
        "use_cache": True,
    }

    dataset = CrystalGraphData(data_path=data_path,
                               fea_path=fea_path,
                               task=task,
                               **dist_dict)
    n_targets = dataset.n_targets
    elem_emb_len = dataset.elem_fea_dim
    nbr_fea_len = dataset.nbr_fea_dim

    train_idx = list(range(len(dataset)))

    if evaluate:
        if test_path:
            print(f"using independent test set: {test_path}")
            test_set = CrystalGraphData(data_path=test_path,
                                        fea_path=fea_path,
                                        task=task,
                                        **dist_dict)
            test_set = torch.utils.data.Subset(test_set, range(len(test_set)))
        elif test_size == 0.0:
            raise ValueError("test-size must be non-zero to evaluate model")
        else:
            print(f"using {test_size} of training set as test set")
            train_idx, test_idx = split(train_idx,
                                        random_state=seed,
                                        test_size=test_size)
            test_set = torch.utils.data.Subset(dataset, test_idx)

    if train:
        if val_path:
            print(f"using independent validation set: {val_path}")
            val_set = CrystalGraphData(data_path=val_path,
                                       fea_path=fea_path,
                                       task=task,
                                       **dist_dict)
            val_set = torch.utils.data.Subset(val_set, range(len(val_set)))
        else:
            if val_size == 0.0 and evaluate:
                print(
                    "No validation set used, using test set for evaluation purposes"
                )
                # NOTE that when using this option care must be taken not to
                # peak at the test-set. The only valid model to use is the one
                # obtained after the final epoch where the epoch count is
                # decided in advance of the experiment.
                val_set = test_set
            elif val_size == 0.0:
                val_set = None
            else:
                print(f"using {val_size} of training set as validation set")
                train_idx, val_idx = split(
                    train_idx,
                    random_state=seed,
                    test_size=val_size / (1 - test_size),
                )
                val_set = torch.utils.data.Subset(dataset, val_idx)

        train_set = torch.utils.data.Subset(dataset, train_idx[0::sample])

    data_params = {
        "batch_size": batch_size,
        "num_workers": workers,
        "pin_memory": False,
        "shuffle": True,
        "collate_fn": collate_batch,
    }

    setup_params = {
        "loss": loss,
        "optim": optim,
        "learning_rate": learning_rate,
        "weight_decay": weight_decay,
        "momentum": momentum,
        "device": device,
    }

    restart_params = {
        "resume": resume,
        "fine_tune": fine_tune,
        "transfer": transfer,
    }

    model_params = {
        "task": task,
        "robust": robust,
        "n_targets": n_targets,
        "elem_emb_len": elem_emb_len,
        "nbr_fea_len": nbr_fea_len,
        "elem_fea_len": elem_fea_len,
        "n_graph": n_graph,
        "h_fea_len": h_fea_len,
        "n_hidden": n_hidden,
    }

    os.makedirs(f"models/{model_name}/", exist_ok=True)

    if log:
        os.makedirs("runs/", exist_ok=True)

    os.makedirs("results/", exist_ok=True)

    if train:
        train_ensemble(
            model_class=CrystalGraphConvNet,
            model_name=model_name,
            run_id=run_id,
            ensemble_folds=ensemble,
            epochs=epochs,
            train_set=train_set,
            val_set=val_set,
            log=log,
            data_params=data_params,
            setup_params=setup_params,
            restart_params=restart_params,
            model_params=model_params,
        )

    if evaluate:

        data_reset = {
            "batch_size": 16 * batch_size,  # faster model inference
            "shuffle": False,  # need fixed data order due to ensembling
        }
        data_params.update(data_reset)

        if task == "regression":
            results_regression(
                model_class=CrystalGraphConvNet,
                model_name=model_name,
                run_id=run_id,
                ensemble_folds=ensemble,
                test_set=test_set,
                data_params=data_params,
                robust=robust,
                device=device,
                eval_type="checkpoint",
            )
        elif task == "classification":
            results_classification(
                model_class=CrystalGraphConvNet,
                model_name=model_name,
                run_id=run_id,
                ensemble_folds=ensemble,
                test_set=test_set,
                data_params=data_params,
                robust=robust,
                device=device,
                eval_type="checkpoint",
            )
Esempio n. 2
0
def test_single_roost():

    data_path = "data/datasets/expt-non-metals.csv"
    fea_path = "data/embeddings/matscholar-embedding.json"
    task = "regression"
    loss = "L1"
    robust = True
    model_name = "roost"
    elem_fea_len = 64
    n_graph = 3
    ensemble = 1
    run_id = 1
    data_seed = 42
    epochs = 10
    log = False
    sample = 1
    test_size = 0.2
    resume = False
    fine_tune = None
    transfer = None
    optim = "AdamW"
    learning_rate = 3e-4
    momentum = 0.9
    weight_decay = 1e-6
    batch_size = 128
    workers = 0
    device = torch.device(
        "cuda") if torch.cuda.is_available() else torch.device("cpu")

    dataset = CompositionData(data_path=data_path,
                              fea_path=fea_path,
                              task=task)
    n_targets = dataset.n_targets
    elem_emb_len = dataset.elem_emb_len

    train_idx = list(range(len(dataset)))

    print(f"using {test_size} of training set as test set")
    train_idx, test_idx = split(train_idx,
                                random_state=data_seed,
                                test_size=test_size)
    test_set = torch.utils.data.Subset(dataset, test_idx)

    print("No validation set used, using test set for evaluation purposes")
    # NOTE that when using this option care must be taken not to
    # peak at the test-set. The only valid model to use is the one
    # obtained after the final epoch where the epoch count is
    # decided in advance of the experiment.
    val_set = test_set

    train_set = torch.utils.data.Subset(dataset, train_idx[0::sample])

    data_params = {
        "batch_size": batch_size,
        "num_workers": workers,
        "pin_memory": False,
        "shuffle": True,
        "collate_fn": collate_batch,
    }

    setup_params = {
        "loss": loss,
        "optim": optim,
        "learning_rate": learning_rate,
        "weight_decay": weight_decay,
        "momentum": momentum,
        "device": device,
    }

    restart_params = {
        "resume": resume,
        "fine_tune": fine_tune,
        "transfer": transfer,
    }

    model_params = {
        "task": task,
        "robust": robust,
        "n_targets": n_targets,
        "elem_emb_len": elem_emb_len,
        "elem_fea_len": elem_fea_len,
        "n_graph": n_graph,
        "elem_heads": 3,
        "elem_gate": [256],
        "elem_msg": [256],
        "cry_heads": 3,
        "cry_gate": [256],
        "cry_msg": [256],
        "out_hidden": [1024, 512, 256, 128, 64],
    }

    os.makedirs(f"models/{model_name}", exist_ok=True)
    os.makedirs(f"results/{model_name}", exist_ok=True)

    train_ensemble(
        model_class=Roost,
        model_name=model_name,
        run_id=run_id,
        ensemble_folds=ensemble,
        epochs=epochs,
        train_set=train_set,
        val_set=val_set,
        log=log,
        data_params=data_params,
        setup_params=setup_params,
        restart_params=restart_params,
        model_params=model_params,
    )

    data_params["batch_size"] = 64 * batch_size  # faster model inference
    data_params["shuffle"] = False  # need fixed data order due to ensembling

    r2, mae, rmse = results_regression(
        model_class=Roost,
        model_name=model_name,
        run_id=run_id,
        ensemble_folds=ensemble,
        test_set=test_set,
        data_params=data_params,
        robust=robust,
        device=device,
        eval_type="checkpoint",
    )

    assert r2 > 0.7
    assert mae < 0.55
    assert rmse < 0.83