Esempio n. 1
0
def test_slice_assign():
    hist = Hist(10, 0, 1)
    hist[:] = [i for i in range(len(hist))]
    assert all([a.value == b for a, b in zip(hist, range(len(hist)))])
    clone = hist.Clone()
    # reverse bins
    hist[:] = clone[::-1]
    assert all([a.value == b.value for a, b in zip(hist, clone[::-1])])
Esempio n. 2
0
def test_ravel():
    hist = Hist2D(3, 0, 1, 4, 0, 1)
    for i, bin in enumerate(hist.bins()):
        bin.value = i
        bin.error = i
    rhist = hist.ravel()
    assert_equal(list(rhist.y()), list(range(12)))
    assert_equal(list(rhist.yerrh()), list(range(12)))
Esempio n. 3
0
def test_overall_efficiency():
    for stat_op in range(0, 8):
        Eff = Efficiency(Hist(20, -3, 3), Hist(20, -3, 3))
        Eff_1bin = Efficiency(Hist(1, -3, 3), Hist(1, -3, 3))
        Eff.SetStatisticOption(stat_op)
        Eff_1bin.SetStatisticOption(stat_op)

        for i in range(1000):
            x = gauss(0, 3.6)
            w = uniform(0, 1)
            passed = w > 0.5
            Eff.Fill(passed, x)
            Eff_1bin.Fill(passed, x)

        assert_almost_equal(Eff.overall_efficiency(overflow=True)[0],
                            Eff_1bin.overall_efficiency(overflow=True)[0])
        assert_almost_equal(Eff.overall_efficiency(overflow=True)[1],
                            Eff_1bin.overall_efficiency(overflow=True)[1])
        assert_almost_equal(Eff.overall_efficiency(overflow=True)[2],
                            Eff_1bin.overall_efficiency(overflow=True)[2])
Esempio n. 4
0
def test_edgesl():
    h = Hist([1, 2, 3, 4])
    assert_equal(list(h.xedgesl()), [1, 2, 3])
    assert_equal(list(h.xedgesl(overflow=True)), [float('-inf'), 1, 2, 3, 4])
    assert_equal(h.xedgesl(0), float('-inf'))
    assert_equal(h.xedgesl(-1), 4)
    assert_equal(h.xedgesl(4), 4)
    # wrap around
    assert_equal(h.xedgesl(5), float('-inf'))
    for i in range(1, h.nbins()):
        assert_equal(h.xedgesl(i), i)
Esempio n. 5
0
def test_edgesh():
    h = Hist([1, 2, 3, 4])
    assert_equal(list(h.xedgesh()), [2, 3, 4])
    assert_equal(list(h.xedgesh(overflow=True)), [1, 2, 3, 4, float('inf')])
    assert_equal(h.xedgesh(0), 1)
    assert_equal(h.xedgesh(-1), float('inf'))
    assert_equal(h.xedgesh(4), float('inf'))
    # wrap around
    assert_equal(h.xedgesh(5), 1)
    for i in range(1, h.nbins()):
        assert_equal(h.xedgesh(i), i + 1)
Esempio n. 6
0
def test_edges():
    h = Hist([1, 2, 3, 4])
    assert_equal(list(h.xedges()), [1, 2, 3, 4])
    assert_equal(list(h.xedges(overflow=True)),
                 [float('-inf'), 1, 2, 3, 4, float('inf')])
    assert_equal(h.xedges(0), float('-inf'))
    assert_equal(h.xedges(-1), float('inf'))
    assert_equal(h.xedges(5), float('inf'))
    # wrap around
    assert_equal(h.xedges(6), float('-inf'))
    for i in range(1, h.nbins() + 1):
        assert_equal(h.xedges(i), i)
Esempio n. 7
0
def test_edgesl():
    h = Hist([1, 2, 3, 4])
    assert_equal(list(h.xedgesl()), [1, 2, 3])
    assert_equal(list(h.xedgesl(overflow=True)),
                 [float('-inf'), 1, 2, 3, 4])
    assert_equal(h.xedgesl(0), float('-inf'))
    assert_equal(h.xedgesl(-1), 4)
    assert_equal(h.xedgesl(4), 4)
    # wrap around
    assert_equal(h.xedgesl(5), float('-inf'))
    for i in range(1, h.nbins()):
        assert_equal(h.xedgesl(i), i)
Esempio n. 8
0
def test_edgesh():
    h = Hist([1, 2, 3, 4])
    assert_equal(list(h.xedgesh()), [2, 3, 4])
    assert_equal(list(h.xedgesh(overflow=True)),
                 [1, 2, 3, 4, float('inf')])
    assert_equal(h.xedgesh(0), 1)
    assert_equal(h.xedgesh(-1), float('inf'))
    assert_equal(h.xedgesh(4), float('inf'))
    # wrap around
    assert_equal(h.xedgesh(5), 1)
    for i in range(1, h.nbins()):
        assert_equal(h.xedgesh(i), i + 1)
Esempio n. 9
0
def test_edges():
    h = Hist([1, 2, 3, 4])
    assert_equal(list(h.xedges()), [1, 2, 3, 4])
    assert_equal(
        list(h.xedges(overflow=True)),
        [float('-inf'), 1, 2, 3, 4, float('inf')])
    assert_equal(h.xedges(0), float('-inf'))
    assert_equal(h.xedges(-1), float('inf'))
    assert_equal(h.xedges(5), float('inf'))
    # wrap around
    assert_equal(h.xedges(6), float('-inf'))
    for i in range(1, h.nbins() + 1):
        assert_equal(h.xedges(i), i)
Esempio n. 10
0
def test_overall_efficiency():
    for stat_op in range(0, 8):
        Eff = Efficiency(Hist(20, -3, 3), Hist(20, -3, 3))
        Eff_1bin = Efficiency(Hist(1, -3, 3), Hist(1, -3, 3))
        Eff.SetStatisticOption(stat_op)
        Eff_1bin.SetStatisticOption(stat_op)

        for i in range(1000):
            x = gauss(0, 3.6)
            w = uniform(0, 1)
            passed = w > 0.5
            Eff.Fill(passed, x)
            Eff_1bin.Fill(passed, x)

        assert_almost_equal(
            Eff.overall_efficiency(overflow=True)[0],
            Eff_1bin.overall_efficiency(overflow=True)[0])
        assert_almost_equal(
            Eff.overall_efficiency(overflow=True)[1],
            Eff_1bin.overall_efficiency(overflow=True)[1])
        assert_almost_equal(
            Eff.overall_efficiency(overflow=True)[2],
            Eff_1bin.overall_efficiency(overflow=True)[2])
Esempio n. 11
0
def get_weights(y_train, pt_train, options):

    print 'getting weights...'
    Nbins = 100

    LV = rt.TH1D("LV", "LV", Nbins, options.train_pt_cut, 100.)
    PU = rt.TH1D("PU", "PU", Nbins, options.train_pt_cut, 100.)
    W = rt.TH1D("W", "W", Nbins, options.train_pt_cut, 100.)

    y_train = y_train.values
    pt_train = pt_train.values

    for y in y_train:
        if y == 1: LV.Fill(pt_train[i0])
        else: PU.Fill(pt_train[i0])

    LV.Scale(1. / LV.Integral())
    PU.Scale(1. / PU.Integral())

    plot_th1([LV, PU])

    #make weight in each pT cat
    for i0 in range(LV.GetNbinsX()):
        if (PU.GetBinContent(i0 + 1) == 0.) or (LV.GetBinContent(i0 + 1)
                                                == 0.):
            W.SetBinContent(i0 + 1, 1)
        else:
            W.SetBinContent(
                i0 + 1,
                float(LV.GetBinContent(i0 + 1)) /
                float(PU.GetBinContent(i0 + 1)))

        #make sure weight isn't too big or too small
        weightUpper = 5.0
        weightLower = 0.2
        if W.GetBinContent(i0 + 1) > weightUpper:
            W.SetBinContent(i0 + 1) == weightUpper
        if W.GetBinContent(i0 + 1) < weightLower:
            W.SetBinContent(i0 + 1) == WeightLower

    W.Print("all")
    #apply weights on training PU samples
    candWeights = np.zeros(len(y_train), dtype=float)
    for y in y_train:
        if y == 1: candWeights[i0] == 1.  #don't weight LV
        else:
            candWeights[i0] = W.GetBinContent(W.FindBin(
                pt_train[i0]))  #weight PU

    return candWeights
Esempio n. 12
0
    def get_data(self):

        print 'Build dataset'
        lFile = h5py.File(options.infile + '.h5', 'r')

        lArr = np.array(lFile.get('Events')[:])

        df = pd.DataFrame(data=lArr)
        y = df['LV']
        x = df.drop(columns=['ecalE', 'genE', 'LV', 'energy', 'pt'])

        eta = df['eta']
        pt = df['pt']

        num_vars = len(x.columns)

        msk = np.random.rand(len(df)) < 0.8
        msk2 = np.zeros(len(df), dtype=bool)

        for i0 in range(len(msk)):
            if (msk[i0] == True) and (pt.iloc[i0] > options.train_pt_cut):
                msk2[i0] = True

        #print msk2[0:1000]
        y_train, x_train = y[msk2], x[msk2]
        y_test, x_test = y[~msk2], x[~msk2]
        print x_test

        #propagate eta, pt for ROC curves, weights
        eta_train, pt_train = eta[msk2], pt[msk2]
        eta_test, pt_test = eta[~msk2], pt[~msk2]

        print 'Train on %i PF candidates (satisfying pT > %f) and use %i for validation.' % (
            len(y_train), options.train_pt_cut, len(y_test))

        return x_train, x_test, y_train, y_test, num_vars, eta_test, pt_test, eta_train, pt_train
Esempio n. 13
0
# create a simple 1D histogram with 10 constant-width bins between 0 and 1
h_simple = Hist(10, 0, 1)
print(h_simple.name)

# If the name is not specified, a UUID is used so that ROOT never complains
# about two histograms having the same name.
# Alternatively you can specify the name (and the title or any other style
# attributes) in the constructor:
h_simple = Hist(10, -4, 12, name='my hist', title='Some Data',
                drawstyle='hist',
                legendstyle='F',
                fillstyle='/')

# fill the histogram
for i in range(1000):
    # all ROOT CamelCase methods are aliased by equivalent snake_case methods
    # so you can call fill() instead of Fill()
    h_simple.Fill(random.gauss(4, 3))

# easily set visual attributes
h_simple.linecolor = 'blue'
h_simple.fillcolor = 'green'
h_simple.fillstyle = '/'

# attributes may be accessed in the same way
print(h_simple.name)
print(h_simple.title)
print(h_simple.markersize)

# plot
Esempio n. 14
0
    def train(self):
        x_train, x_test, y_train, y_test, num_vars, eta_test, pt_test, eta_train, pt_train = self.get_data(
        )

        Nbatch = 500
        Nepoch = 10

        model = self.build_model(num_vars)
        model.summary()

        scaler = StandardScaler().fit(x_train)
        x_train = scaler.transform(x_train)

        callbacks = all_callbacks(
            stop_patience=1000,
            lr_factor=0.5,
            lr_patience=10,
            lr_epsilon=0.000001,
            lr_cooldown=2,
            lr_minimum=0.0000001,
            outputDir=
            '/uscms_data/d3/jkrupa/pf_studies/CMSSW_10_5_0_pre2/src/CaloTrigNN/CaloNtupler/test/h5_files'
        )

        print 'Fit model...'
        if options.use_weights:
            weights = get_weights(y_train, pt_train, options)
            history = model.fit(x_train,
                                y_train,
                                epochs=Nepoch,
                                batch_size=Nbatch,
                                callbacks=callbacks.callbacks,
                                validation_split=0.0,
                                sample_weight=weights)
        else:
            history = model.fit(x_train,
                                y_train,
                                epochs=Nepoch,
                                batch_size=Nbatch,
                                callbacks=callbacks.callbacks,
                                validation_split=0.0)

        #https://hackernoon.com/simple-guide-on-how-to-generate-roc-plot-for-keras-classifier-2ecc6c73115a
        y_pred = model.predict(x_test).ravel()

        #inclusive
        fpr, tpr, thresholds = roc_curve(y_test, y_pred)

        #kinematic binning
        if options.inc:
            lpT = [1., 10000.0]
            leta = [1.7, 3.0]
        else:
            lpT = [1., 5., 10., 20., 10000.0]
            leta = [1.7, 2.0, 2.5, 3.0]

        if options.makeroc:
            for i0 in range(len(lpT) - 1):
                for i1 in range(len(leta) - 1):
                    make_roc_curve(y_pred, y_test, eta_test, pt_test, lpT[i0],
                                   lpT[i0 + 1], leta[i1], leta[i1 + 1],
                                   options)

        frozen_graph = freeze_session(
            K.get_session(),
            output_names=[out.op.name for out in model.outputs])
        tf.train.write_graph(frozen_graph,
                             "h5_files",
                             "tf_model.pb",
                             as_text=False)

        print_model_to_json(
            model,
            '/uscms_data/d3/jkrupa/pf_studies/CMSSW_10_5_0_pre2/src/CaloTrigNN/CaloNtupler/test/h5_files/model.json'
        )
        model.save_weights(
            '/uscms_data/d3/jkrupa/pf_studies/CMSSW_10_5_0_pre2/src/CaloTrigNN/CaloNtupler/test/h5_files/dense_model_weights.h5'
        )
        json_string = model.to_json()
Esempio n. 15
0
from rootpy.plotting import Hist, Canvas, Legend, set_style
from rootpy.plotting.contrib.quantiles import qqgraph
from rootpy.extern.six.moves import range

set_style('ATLAS')

c = Canvas(width=1200, height=600)
c.Divide(2, 1, 1e-3, 1e-3)

rand = ROOT.TRandom3()
h1 = Hist(100, -5, 5, name="h1", title="Histogram 1",
          linecolor='red', legendstyle='l')
h2 = Hist(100, -5, 5, name="h2", title="Histogram 2",
          linecolor='blue', legendstyle='l')

for ievt in range(10000):
    h1.Fill(rand.Gaus(0, 0.8))
    h2.Fill(rand.Gaus(0, 1))

pad = c.cd(1)

h1.Draw('hist')
h2.Draw('hist same')

leg = Legend([h1, h2], pad=pad, leftmargin=0.5,
             topmargin=0.11, rightmargin=0.05,
             textsize=20)
leg.Draw()

pad = c.cd(2)
Esempio n. 16
0
def test_slice_assign_error():
    hist = Hist(10, 0, 1)
    hist[:] = [(i, i / 2.) for i in range(len(hist))]
    assert all([a.value == b for a, b in zip(hist, range(len(hist)))])
    assert all([a.error == b / 2. for a, b in zip(hist, range(len(hist)))])
Esempio n. 17
0
def test_slice_assign_bad():
    hist = Hist(10, 0, 1)
    hist[:] = range(len(hist) + 1)
Esempio n. 18
0
def test_slice_assign_bad():
    hist = Hist(10, 0, 1)
    hist[:] = range(len(hist) + 1)
Esempio n. 19
0
    def load_analysis(self, inputs, res_T):
        cHW = res_T[inputs.split('/')[-1]][0]
        tcHW = res_T[inputs.split('/')[-1]][1]
        xsec = res_T[inputs.split('/')[-1]][2]
        # Create chain of root trees
        chain1 = ROOT.TChain("Delphes")
        chain1.Add(inputs)

        # Create object of class ExRootTreeReader
        treeReader = ROOT.ExRootTreeReader(chain1)
        numberOfEntries = treeReader.GetEntries()

        # create new root file
        root_name = 'cHW_{}_tcHW_{}.root'.format(cHW, tcHW)
        csv_name = 'cHW_{}_tcHW_{}.csv'.format(cHW, tcHW)
        f = root_open(root_name, "recreate")
        tree = Tree("cHW_{}_tcHW_{}".format(cHW, tcHW))
        tree.create_branches({
            'PT_l1': 'F',
            'PT_l2': 'F',
            'PT_ll': 'F',
            'Cos_lZ': 'F',
            'DPHI_ll': 'F',
            'PT_j1': 'F',
            'PT_j2': 'F',
            'PT_b1': 'F',
            'PT_b2': 'F',
            'Eta_H': 'F',
            'phi_H': 'F',
            'M_H': 'F',
            'Cos_Hb1': 'F',
            'PT_H': 'F',
            'PT_ZH': 'F',
            'M_Z': 'F',
            'M_ZH': 'F',
            'cHW': 'F',
            'tcHW': 'F',
            'xsec': 'F'
        })

        # Get pointers to branches used in this analysis
        branchJet = treeReader.UseBranch("Jet")
        branchElectron = treeReader.UseBranch("Electron")
        branchMuon = treeReader.UseBranch("Muon")
        branchPhoton = treeReader.UseBranch("Photon")
        branchMET = treeReader.UseBranch("MissingET")
        # Loop over all events
        for entry in range(0, numberOfEntries):
            # Load selected branches with data from specified event
            treeReader.ReadEntry(entry)
            muons = []
            for n in xrange(branchMuon.GetEntries()):
                muons.append(branchMuon.At(n))

            if len(muons) >= 2:
                muons = sorted(branchMuon,
                               key=lambda Muon: Muon.P4().Pt(),
                               reverse=True)
            else:
                continue

            missing = sorted(branchMET,
                             key=lambda MisingET: MisingET.MET,
                             reverse=True)
            muon1 = muons[0]
            muon2 = muons[1]
            Muon1 = ROOT.TLorentzVector()
            Muon2 = ROOT.TLorentzVector()
            Muon1.SetPtEtaPhiE(muon1.P4().Pt(),
                               muon1.P4().Eta(),
                               muon1.P4().Phi(),
                               muon1.P4().E())
            Muon2.SetPtEtaPhiE(muon2.P4().Pt(),
                               muon2.P4().Eta(),
                               muon2.P4().Phi(),
                               muon2.P4().E())
            met = ROOT.TLorentzVector()
            met.SetPtEtaPhiE(missing[0].P4().Pt(), missing[0].P4().Eta(),
                             missing[0].P4().Phi(), missing[0].P4().E())
            bjato1 = ROOT.TLorentzVector()
            bjato2 = ROOT.TLorentzVector()
            jato1 = ROOT.TLorentzVector()
            jato2 = ROOT.TLorentzVector()
            ####################################################################################
            bjets, ljets = [], []
            for n in xrange(branchJet.GetEntries()):
                if branchJet.At(n).BTag == 1:
                    bjets.append(branchJet.At(n))
                else:
                    ljets.append(branchJet.At(n))

            if len(bjets) >= 2:
                bjets = sorted(bjets,
                               key=lambda BJet: BJet.P4().Pt(),
                               reverse=True)
            else:
                continue

            ljets = sorted(ljets, key=lambda Jet: Jet.P4().Pt(), reverse=True)

            try:
                jato1.SetPtEtaPhiE(ljets[0].P4().Pt(), ljets[0].P4().Eta(),
                                   ljets[0].P4().Phi(), ljets[0].P4().E())
            except IndexError:
                tree.PT_j1 = -999

            try:
                jato2.SetPtEtaPhiE(ljets[1].P4().Pt(), ljets[1].P4().Eta(),
                                   ljets[1].P4().Phi(), ljets[1].P4().E())
            except IndexError:
                tree.PT_j2 = -999

        ####################################################################################
            bjato1.SetPtEtaPhiE(bjets[0].P4().Pt(), bjets[0].P4().Eta(),
                                bjets[0].P4().Phi(), bjets[0].P4().E())
            bjato2.SetPtEtaPhiE(bjets[1].P4().Pt(), bjets[1].P4().Eta(),
                                bjets[1].P4().Phi(), bjets[1].P4().E())

            ###################################################################################################
            if 95 < (bjato1 + bjato2).M() < 135:
                tree.PT_l1 = Muon1.Pt()
                tree.PT_l2 = Muon2.Pt()
                tree.PT_ll = (Muon1 + Muon2).Pt()
                tree.PT_b1 = bjato1.Pt()
                tree.PT_b2 = bjato2.Pt()
                tree.PT_j1 = jato1.Pt()
                tree.PT_j2 = jato2.Pt()
                Z = ROOT.TLorentzVector()
                H = ROOT.TLorentzVector()
                ZH = ROOT.TLorentzVector()
                Z = (Muon1 + Muon2)
                H = (bjato1 + bjato2)
                ZH = Z + H
                tree.phi_H = H.Phi()
                tree.PT_ZH = ZH.Pt()
                tree.M_ZH = ZH.M()
                tree.PT_H = H.Pt()
                tree.Eta_H = H.Eta()
                tree.M_H = H.M()
                tree.M_Z = Z.M()
                tree.DPHI_ll = np.abs(Muon1.DeltaPhi(Muon2))
                ########################## boosted objects  ############################################
                Ztob = ROOT.TLorentzVector()
                Ztob.SetPxPyPzE(Z.Px(), Z.Py(), Z.Pz(), Z.E())
                Zboost = ROOT.TVector3()
                Zboost = Ztob.BoostVector()
                v = Zboost.Unit()
                Muon1.Boost(-Zboost)
                Htob = ROOT.TLorentzVector()
                Htob.SetPxPyPzE(H.Px(), H.Py(), H.Pz(), H.E())
                Hboost = ROOT.TVector3()
                Hboost = Htob.BoostVector()
                ang = Hboost.Unit()
                bjato1.Boost(-Hboost)
                tree.Cos_Hb1 = np.cos(bjato1.Angle(ang))
                tree.Cos_lZ = np.cos(Muon1.Angle(v))
                ##########################################################################################
                tree.cHW = cHW
                tree.tcHW = tcHW
                tree.xsec = xsec
                tree.Fill()

        tree.write()
        f.close()

        #create the csv output

        to_convert = root2array(root_name, "cHW_{}_tcHW_{}".format(cHW, tcHW))

        df_conv = pd.DataFrame(to_convert)

        df_conv.to_csv(csv_name,
                       index=False,
                       header=df_conv.keys(),
                       mode='w',
                       sep=' ')

        ### move everything
        if not os.path.exists('500GeV_res'):
            os.makedirs('500GeV_res')
            os.makedirs('500GeV_res/roots')
            os.makedirs('500GeV_res/csv')

        shutil.move(root_name, '500GeV_res/roots')
        shutil.move(csv_name, '500GeV_res/csv')
Esempio n. 20
0
from rootpy.extern.six.moves import range

try:
    kwargs = {}
    for arg in extra:
        name, value = arg.lstrip('--').split('=')
        kwargs[name] = value
except ValueError:
    print("specify style parameters with --name=value")

try:
    style = get_style(args.style, **kwargs)
except ValueError:
    print('Invalid style: `{0}`. Using the `ATLAS` style.'.format(args.style))
    style = get_style('ATLAS')

# Use styles as context managers. The selected style will only apply
# within the following context:
with style:
    c = Canvas()
    hpx = Hist(100, -4, 4, name="hpx", title="This is the px distribution")
    # generate some random data
    ROOT.gRandom.SetSeed()
    for i in range(25000):
        hpx.Fill(ROOT.gRandom.Gaus())
    hpx.GetXaxis().SetTitle("random variable [unit]")
    hpx.GetYaxis().SetTitle("#frac{dN}{dr} [unit^{-1}]")
    hpx.SetMaximum(1000.)
    hpx.Draw()
    wait()
Esempio n. 21
0
from random import gauss
from rootpy.io import root_open
from rootpy.tree import Tree, TreeChain
from rootpy.plotting import Hist
from rootpy.extern.six.moves import range

# Make two files, each with a Tree called "test"

print("Creating test tree in chaintest1.root")
f = root_open("chaintest1.root", "recreate")

tree = Tree("test")
branches = {'x': 'F', 'y': 'F', 'z': 'F', 'i': 'I'}
tree.create_branches(branches)

for i in range(10000):
    tree.x = gauss(.5, 1.)
    tree.y = gauss(.3, 2.)
    tree.z = gauss(13., 42.)
    tree.i = i
    tree.fill()

# Make a histogram of x when y > 1
hist1 = Hist(100, -10, 10, name='hist1')
tree.Draw('x', 'y > 1', hist=hist1)
hist1.SetDirectory(0)  # memory resident
print("The first tree has {0:f} entries where y > 1".format(hist1.Integral()))

tree.write()
f.close()
Esempio n. 22
0
h1 = Hist(100,
          -5,
          5,
          name="h1",
          title="Histogram 1",
          linecolor='red',
          legendstyle='l')
h2 = Hist(100,
          -5,
          5,
          name="h2",
          title="Histogram 2",
          linecolor='blue',
          legendstyle='l')

for ievt in range(10000):
    h1.Fill(rand.Gaus(0, 0.8))
    h2.Fill(rand.Gaus(0, 1))

pad = c.cd(1)

h1.Draw('hist')
h2.Draw('hist same')

leg = Legend([h1, h2],
             pad=pad,
             leftmargin=0.5,
             topmargin=0.11,
             rightmargin=0.05,
             textsize=20)
leg.Draw()
        'M_H': 'F',
        'MT_W': 'F',
        'Cos_Hb1': 'F',
	'PT_H': 'F',
	})


# Get pointers to branches used in this analysis
branchJet = treeReader.UseBranch("Jet")
branchElectron = treeReader.UseBranch("Electron")
branchMuon = treeReader.UseBranch("Muon")
branchPhoton = treeReader.UseBranch("Photon")
branchMET = treeReader.UseBranch("MissingET")
####################################################################
# Loop over all events
for entry in range(0, numberOfEntries):
  # Load selected branches with data from specified event
	treeReader.ReadEntry(entry)
##########################################################################################################
	eletrons = sorted(branchElectron, key=lambda Electron: Electron.PT, reverse=True)
        missing = sorted(branchMET, key=lambda MisingET: MisingET.MET, reverse=True)
	elec1 = eletrons[0]
        eletron1 = ROOT.TLorentzVector()
	eletron1.SetPtEtaPhiE(elec1.PT,elec1.Eta,elec1.Phi,elec1.P4().E())
        met = ROOT.TLorentzVector()
	met.SetPtEtaPhiE(missing[0].P4().Pt(),missing[0].P4().Eta(),missing[0].P4().Phi(),missing[0].P4().E())
        bjato1 = ROOT.TLorentzVector()
        bjato2 = ROOT.TLorentzVector()
        jato1 = ROOT.TLorentzVector()
        jato2 = ROOT.TLorentzVector()
####################################################################################
Esempio n. 24
0
ROOT.gROOT.SetBatch()
set_style('ATLAS')
np.random.seed(0)
random.seed(0)

# create an example TTree dataset

class Sample(TreeModel):
    x = FloatCol()
    y = FloatCol()


with root_open('sample.root', 'recreate'):
    # generate toy data in a TTree
    tree = Tree('sample', model=Sample)
    for i in range(1000):
        tree.x = gauss(0, 1)
        tree.y = gauss(0, 1)
        tree.Fill()
    tree.write()


# read in the TTree as a NumPy array
array = root2array('sample.root', 'sample')

if os.path.exists('bootstrap.gif'):
    os.remove('bootstrap.gif')
canvas = Canvas(width=500, height=400)
hist = Hist2D(10, -3, 3, 10, -3, 3, drawstyle='LEGO2')

output = root_open('bootstrap.root', 'recreate')