h.SetBinContent(1, h.GetBinContent(1) + h.GetBinContent(0)) # # h = h.merge_bins([(0, 1),]) h.drawstyle = 'hist' h.color = sigCOLORS[i] h.legendstyle = 'L' h.linewidth = 2 hs.append(h) legItems.append(h) if args.dataset == 'all': # divide canvas to draw ratio mainPad = Pad(0, 0.25, 1, 1.) mainPad.SetBottomMargin(0.0) mainPad.Draw() subPad = Pad(0, 0.05, 1, 0.24) subPad.SetTopMargin(0.02) subPad.SetBottomMargin(0.25) subPad.Draw() else: mainPad = ROOT.gPad mainPad.cd() legend = Legend(legItems, pad=mainPad, margin=0.25, leftmargin=0.45, topmargin=0.02, entrysep=0.01,
topmargins = (1.0 , 1.0 ) bottommargins = (0.0 , 0.4 ) leftmargins = (0.0 , 0.0 ) rightmargins = (0.0 , 0.0 ) top = topmargins[doRatio] bottom = bottommargins[doRatio] left = leftmargins[doRatio] right = 1 - rightmargins[doRatio] canvas.cd() histpad = Pad(left,bottom,right, top,color="white",bordersize =5) if not doRatio: histpad.SetBottomMargin(0.15) histpad.SetFrameBorderMode(0) histpad.Draw() histpad.SetLogy() histpad.cd() histpad.SetFrameBorderSize(2) histpad.SetFrameLineWidth(2); canvas.cd() #ratiopad = Pad(leftmargins[1],0.00,1 - rightmargins[1],bottommargins[1]-0.02) ratiopad = Pad(leftmargins[1],0.00,1 - rightmargins[1],bottommargins[1]-0.02) ratiopad.SetBottomMargin(0.33) ratiopad.SetTopMargin(0.03) ratiopad.SetFrameLineWidth(2);
class Plotter(object): def __init__(self, channel, year, plot_dir, base_dir, post_fix, selection_data, selection_mc, selection_tight, pandas_selection, lumi, model, transformation, features, process_signals, plot_signals, blinded, datacards=[], mini_signals=False, do_ratio=True, mc_subtraction=True, dir_suffix='', relaxed_mc_scaling=1., data_driven=True): self.channel = channel.split('_')[0] self.year = year self.full_channel = channel self.plt_dir = '/'.join( [plot_dir, channel, '_'.join([dir_suffix, get_time_str()])]) self.base_dir = base_dir self.post_fix = post_fix self.selection_data = ' & '.join(selection_data) self.selection_mc = ' & '.join(selection_mc) self.selection_tight = selection_tight self.pandas_selection = pandas_selection self.lumi = lumi self.model = model self.transformation = transformation self.features = features self.process_signals = process_signals self.plot_signals = plot_signals if self.process_signals else [] self.blinded = blinded self.selection_lnt = 'not (%s)' % self.selection_tight self.do_ratio = do_ratio self.mini_signals = mini_signals self.datacards = datacards self.mc_subtraction = mc_subtraction self.relaxed_mc_scaling = relaxed_mc_scaling self.data_driven = data_driven if self.year == 2018: from plotter.samples.samples_2018 import get_data_samples, get_mc_samples, get_signal_samples if self.year == 2017: from plotter.samples.samples_2017 import get_data_samples, get_mc_samples, get_signal_samples if self.year == 2016: from plotter.samples.samples_2016 import get_data_samples, get_mc_samples, get_signal_samples self.get_data_samples = get_data_samples self.get_mc_samples = get_mc_samples self.get_signal_samples = get_signal_samples def total_weight_calculator(self, df, weight_list, scalar_weights=[]): total_weight = df[weight_list[0]].to_numpy().astype(np.float) for iw in weight_list[1:]: total_weight *= df[iw].to_numpy().astype(np.float) for iw in scalar_weights: total_weight *= iw return total_weight def create_canvas(self, ratio=True): if ratio: self.canvas = Canvas(width=700, height=700) self.canvas.Draw() self.canvas.cd() self.main_pad = Pad(0., 0.25, 1., 1.) self.main_pad.Draw() self.canvas.cd() self.ratio_pad = Pad(0., 0., 1., 0.25) self.ratio_pad.Draw() self.main_pad.SetTicks(True) self.main_pad.SetBottomMargin(0.) self.main_pad.SetLeftMargin(0.15) self.main_pad.SetRightMargin(0.15) self.ratio_pad.SetLeftMargin(0.15) self.ratio_pad.SetRightMargin(0.15) self.ratio_pad.SetTopMargin(0.) self.ratio_pad.SetGridy() self.ratio_pad.SetBottomMargin(0.3) else: self.canvas = Canvas(width=700, height=700) self.canvas.Draw() self.canvas.cd() self.main_pad = Pad(0., 0., 1., 1.) self.main_pad.Draw() self.canvas.cd() self.ratio_pad = Pad(-1., -1., -.9, -.9) self.ratio_pad.Draw() # put it outside the canvas self.main_pad.SetTicks(True) self.main_pad.SetTopMargin(0.15) self.main_pad.SetBottomMargin(0.15) self.main_pad.SetLeftMargin(0.15) self.main_pad.SetRightMargin(0.15) def create_datacards(self, data, bkgs, signals, label, protect_empty_bins=['nonprompt']): ''' FIXME! For now this is specific to the data-driven case ''' # save a ROOT file with histograms, aka datacard datacard_dir = '/'.join([self.plt_dir, 'datacards']) makedirs(datacard_dir, exist_ok=True) outfile = ROOT.TFile.Open( '/'.join([datacard_dir, 'datacard_%s.root' % label]), 'recreate') outfile.cd() # data in tight data.name = 'data_obs' data.Write() # reads off a dictionary for bkg_name, bkg in bkgs.items(): bkg.name = bkg_name.split('#')[0] bkg.drawstyle = 'HIST E' bkg.color = 'black' bkg.linewidth = 2 # manual protection against empty bins, that would make combine crash if bkg_name in protect_empty_bins: for ibin in bkg.bins_range(): if bkg.GetBinContent(ibin) <= 0.: bkg.SetBinContent(ibin, 1e-2) bkg.SetBinError(ibin, np.sqrt(1e-2)) bkg.Write() # signals for isig in signals: isig.name = isig.name.split('#')[0] isig.drawstyle = 'HIST E' isig.color = 'black' isig.Write() # print out the txt datacard with open( '/'.join([ datacard_dir, 'datacard_%s_%s.txt' % (label, isig.name) ]), 'w') as card: card.write(''' imax 1 number of bins jmax * number of processes minus 1 kmax * number of nuisance parameters -------------------------------------------------------------------------------------------------------------------------------------------- shapes * {cat} datacard_{cat}.root $PROCESS $PROCESS_$SYSTEMATIC -------------------------------------------------------------------------------------------------------------------------------------------- bin {cat} observation {obs:d} -------------------------------------------------------------------------------------------------------------------------------------------- bin {cat} {cat} {cat} process {signal_name} nonprompt prompt process 0 1 2 rate {signal:.4f} {nonprompt:.4f} {prompt:.4f} -------------------------------------------------------------------------------------------------------------------------------------------- lumi lnN 1.025 - - norm_prompt_{ch}_{y}_{cat} lnN - - 1.15 norm_nonprompt_{ch}_{y}_{cat} lnN - 1.20 - norm_sig_{ch}_{y}_{cat} lnN 1.2 - - -------------------------------------------------------------------------------------------------------------------------------------------- {cat} autoMCStats 0 0 1 '''.format( cat=label, obs=int(data.integral()) if self.blinded == False else -1, signal_name=isig.name, signal=isig.integral(), ch=self.full_channel, y=self.year, prompt=bkgs['prompt'].integral(), nonprompt=bkgs['nonprompt'].integral(), )) outfile.Close() def plot(self): evaluator = Evaluator(self.model, self.transformation, self.features) makedirs(self.plt_dir, exist_ok=True) makedirs('/'.join([self.plt_dir, 'lin']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'log']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lin', 'png']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lin', 'root']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'log', 'png']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'log', 'root']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lnt_region', 'lin']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lnt_region', 'log']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lnt_region', 'lin', 'png']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lnt_region', 'lin', 'root']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lnt_region', 'log', 'png']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'lnt_region', 'log', 'root']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'shapes', 'lin']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'shapes', 'log']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'shapes', 'lin', 'png']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'shapes', 'lin', 'root']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'shapes', 'log', 'png']), exist_ok=True) makedirs('/'.join([self.plt_dir, 'shapes', 'log', 'root']), exist_ok=True) # NN evaluator print('============> starting reading the trees') print('Plots will be stored in: ', self.plt_dir) now = time() signal = [] if self.process_signals: signal = self.get_signal_samples(self.channel, self.base_dir, self.post_fix, self.selection_data, mini=self.mini_signals) else: signal = [] data = self.get_data_samples(self.channel, self.base_dir, self.post_fix, self.selection_data) mc = self.get_mc_samples(self.channel, self.base_dir, self.post_fix, self.selection_mc) print('============> it took %.2f seconds' % (time() - now)) # evaluate FR for isample in (mc + data): #+signal): isample.df['fr'] = evaluator.evaluate(isample.df) # already corrected, ready to be applied in lnt-not-tight isample.df['fr_corr'] = isample.df['fr'] / (1. - isample.df['fr']) # apply an extra selection to the pandas dataframes if len(self.pandas_selection): for isample in (mc + data + signal): isample.df = isample.df.query(self.pandas_selection) # split the dataframe in tight and lnt-not-tight (called simply lnt for short) print('============> splitting dataframe in tight and loose not tight') for isample in (mc + data + signal): isample.df_tight = isample.df.query(self.selection_tight) if isample not in signal: isample.df_lnt = isample.df.query(self.selection_lnt) # free some mem del isample.df gc.collect() print('============> ... done') # sort depending on their position in the stack mc.sort(key=lambda x: x.position_in_stack) # now we plot self.create_canvas(self.do_ratio) for ivar in variables: variable, bins, label, xlabel, ylabel, extra_sel = ivar.var, ivar.bins, ivar.label, ivar.xlabel, ivar.ylabel, ivar.extra_selection print('plotting', label) ###################################################################################### # plot MC stacks, in tight and lnt ###################################################################################### stack_prompt = [] stack_nonprompt = [] stack_nonprompt_control = [] for imc in mc: if extra_sel: mc_df_tight = imc.df_tight.query(extra_sel) mc_df_lnt = imc.df_lnt.query(extra_sel) else: mc_df_tight = imc.df_tight mc_df_lnt = imc.df_lnt histo_tight = Hist(bins, title=imc.label, markersize=0, legendstyle='F', name=imc.datacard_name + '#' + label + '#t') weights = self.total_weight_calculator( mc_df_tight, ['weight'] + imc.extra_signal_weights, [self.lumi, imc.lumi_scaling]) histo_tight.fill_array(mc_df_tight[variable], weights=weights * self.relaxed_mc_scaling) histo_tight.fillstyle = 'solid' histo_tight.fillcolor = 'steelblue' if self.data_driven else imc.colour histo_tight.linewidth = 0 stack_prompt.append(histo_tight) # optionally remove the MC subtraction in loose-not-tight # may help if MC stats is terrible (and it often is) if self.data_driven: if self.mc_subtraction: histo_lnt = Hist(bins, title=imc.label, markersize=0, legendstyle='F', name=imc.datacard_name + '#' + label + '#lnt') weights = self.total_weight_calculator( mc_df_lnt, ['weight', 'fr_corr'] + imc.extra_signal_weights, [-1., self.lumi, imc.lumi_scaling]) histo_lnt.fill_array(mc_df_lnt[variable], weights=weights * self.relaxed_mc_scaling) histo_lnt.fillstyle = 'solid' histo_lnt.fillcolor = 'skyblue' if self.data_driven else imc.colour histo_lnt.linewidth = 0 stack_nonprompt.append(histo_lnt) histo_lnt_control = Hist(bins, title=imc.label, markersize=0, legendstyle='F', name=imc.datacard_name + '#' + label + '#lntcontrol') weights_control = self.total_weight_calculator( mc_df_lnt, ['weight'] + imc.extra_signal_weights, [self.lumi, imc.lumi_scaling]) histo_lnt_control.fill_array(mc_df_lnt[variable], weights=weights_control * self.relaxed_mc_scaling) histo_lnt_control.fillstyle = 'solid' histo_lnt_control.fillcolor = imc.colour histo_lnt_control.linewidth = 0 # print(histo_lnt_control) # print(histo_lnt_control.fillcolor) # print(imc.name, imc.colour) # print(histo_lnt_control.integral()) stack_nonprompt_control.append(histo_lnt_control) # merge different samples together (add the histograms) # prepare two temporary containers for the post-grouping histograms stack_prompt_tmp = [] stack_nonprompt_tmp = [] stack_nonprompt_control_tmp = [] for ini, fin in [(stack_prompt, stack_prompt_tmp), (stack_nonprompt, stack_nonprompt_tmp), (stack_nonprompt_control, stack_nonprompt_control_tmp)]: for k, v in groups.items(): grouped = [] for ihist in ini: if ihist.name.split('#')[0] in v: grouped.append(ihist) elif ihist.name.split('#')[0] not in togroup: fin.append(ihist) if len(grouped): group = sum(grouped) group.title = k group.name = '#'.join([k] + ihist.name.split('#')[1:]) group.fillstyle = grouped[0].fillstyle group.fillcolor = grouped[0].fillcolor group.linewidth = grouped[0].linewidth fin.append(group) stack_prompt = stack_prompt_tmp stack_nonprompt = stack_nonprompt_tmp stack_nonprompt_control = stack_nonprompt_control_tmp ###################################################################################### # plot the signals ###################################################################################### all_signals = [] signals_to_plot = [] for isig in signal: if variable not in self.datacards: if not isig.toplot: continue if variable == 'fr' or variable == 'fr_corr': continue if extra_sel: isig_df_tight = isig.df_tight.query(extra_sel) else: isig_df_tight = isig.df_tight histo_tight = Hist( bins, title=isig.label, markersize=0, legendstyle='L', name=isig.datacard_name + '#' + label ) # the "#" thing is a trick to give hists unique name, else ROOT complains weights = self.total_weight_calculator( isig_df_tight, ['weight'] + isig.extra_signal_weights, [self.lumi, isig.lumi_scaling]) histo_tight.fill_array(isig_df_tight[variable], weights=weights) histo_tight.color = isig.colour histo_tight.fillstyle = 'hollow' histo_tight.linewidth = 2 histo_tight.linestyle = 'dashed' histo_tight.drawstyle = 'HIST' all_signals.append(histo_tight) if isig.toplot: signals_to_plot.append(histo_tight) ###################################################################################### # plot the data ###################################################################################### data_prompt = [] data_nonprompt = [] data_nonprompt_control = [] for idata in data: if extra_sel: idata_df_tight = idata.df_tight.query(extra_sel) idata_df_lnt = idata.df_lnt.query(extra_sel) else: idata_df_tight = idata.df_tight idata_df_lnt = idata.df_lnt histo_tight = Hist(bins, title=idata.label, markersize=1, legendstyle='LEP') histo_tight.fill_array(idata_df_tight[variable]) data_prompt.append(histo_tight) if self.data_driven: histo_lnt = Hist(bins, title=idata.label, markersize=0, legendstyle='F') histo_lnt.fill_array(idata_df_lnt[variable], weights=idata_df_lnt.fr_corr) histo_lnt.fillstyle = 'solid' histo_lnt.fillcolor = 'skyblue' histo_lnt.linewidth = 0 histo_lnt_control = Hist(bins, title=idata.label, markersize=1, legendstyle='LEP') histo_lnt_control.fill_array(idata_df_lnt[variable]) data_nonprompt.append(histo_lnt) data_nonprompt_control.append(histo_lnt_control) if self.data_driven: # put the prompt backgrounds together all_exp_prompt = sum(stack_prompt) all_exp_prompt.title = 'prompt' # put the nonprompt backgrounds together all_exp_nonprompt = sum(stack_nonprompt + data_nonprompt) all_exp_nonprompt.fillstyle = 'solid' all_exp_nonprompt.fillcolor = 'skyblue' all_exp_nonprompt.linewidth = 0 all_exp_nonprompt.title = 'nonprompt' # create the stacks stack = HistStack([all_exp_prompt, all_exp_nonprompt], drawstyle='HIST', title='') stack_control = HistStack(stack_nonprompt_control, drawstyle='HIST', title='') else: stack = HistStack(stack_prompt, drawstyle='HIST', title='') # stat uncertainty hist_error = stack.sum #sum([all_exp_prompt, all_exp_nonprompt]) hist_error.drawstyle = 'E2' hist_error.fillstyle = '/' hist_error.color = 'gray' hist_error.title = 'stat. unc.' hist_error.legendstyle = 'F' if self.data_driven: hist_error_control = stack_control.sum hist_error_control.drawstyle = 'E2' hist_error_control.fillstyle = '/' hist_error_control.color = 'gray' hist_error_control.title = 'stat. unc.' hist_error_control.legendstyle = 'F' # put the data together all_obs_prompt = sum(data_prompt) all_obs_prompt.title = 'observed' if self.data_driven: all_obs_nonprompt_control = sum(data_nonprompt_control) all_obs_nonprompt_control.title = 'observed' all_obs_nonprompt_control.drawstyle = 'EP' # prepare the legend print(signals_to_plot) for jj in signals_to_plot: print(jj.name, jj.integral()) if len(signals_to_plot): legend = Legend([all_obs_prompt, stack, hist_error], pad=self.main_pad, leftmargin=0., rightmargin=0., topmargin=0., textfont=42, textsize=0.025, entrysep=0.01, entryheight=0.04) legend_signals = Legend(signals_to_plot, pad=self.main_pad, leftmargin=0., rightmargin=0., topmargin=0., textfont=42, textsize=0.025, entrysep=0.01, entryheight=0.04) legend_signals.SetBorderSize(0) legend_signals.x1 = 0.42 legend_signals.y1 = 0.74 legend_signals.x2 = 0.88 legend_signals.y2 = 0.90 legend_signals.SetFillColor(0) legend.SetBorderSize(0) legend.x1 = 0.2 legend.y1 = 0.74 legend.x2 = 0.45 legend.y2 = 0.90 legend.SetFillColor(0) else: legend = Legend([all_obs_prompt, stack, hist_error], pad=self.main_pad, leftmargin=0., rightmargin=0., topmargin=0., textfont=42, textsize=0.03, entrysep=0.01, entryheight=0.04) legend.SetBorderSize(0) legend.x1 = 0.55 legend.y1 = 0.74 legend.x2 = 0.88 legend.y2 = 0.90 legend.SetFillColor(0) # plot with ROOT, linear and log scale for islogy in [False, True]: things_to_plot = [stack, hist_error] if not self.blinded: things_to_plot.append(all_obs_prompt) # plot signals, as an option if self.plot_signals: things_to_plot += signals_to_plot # set the y axis range # FIXME! setting it by hand to each object as it doesn't work if passed to draw if islogy: yaxis_max = 40. * max( [ithing.max() for ithing in things_to_plot]) else: yaxis_max = 1.65 * max( [ithing.max() for ithing in things_to_plot]) if islogy: yaxis_min = 0.01 else: yaxis_min = 0. for ithing in things_to_plot: ithing.SetMaximum(yaxis_max) draw(things_to_plot, xtitle=xlabel, ytitle=ylabel, pad=self.main_pad, logy=islogy) # expectation uncertainty in the ratio pad ratio_exp_error = Hist(bins) ratio_data = Hist(bins) for ibin in hist_error.bins_range(): ratio_exp_error.set_bin_content(ibin, 1.) ratio_exp_error.set_bin_error( ibin, hist_error.get_bin_error(ibin) / hist_error.get_bin_content(ibin) if hist_error.get_bin_content(ibin) != 0. else 0.) ratio_data.set_bin_content( ibin, all_obs_prompt.get_bin_content(ibin) / hist_error.get_bin_content(ibin) if hist_error.get_bin_content(ibin) != 0. else 0.) ratio_data.set_bin_error( ibin, all_obs_prompt.get_bin_error(ibin) / hist_error.get_bin_content(ibin) if hist_error.get_bin_content(ibin) != 0. else 0.) ratio_data.drawstyle = 'EP' ratio_data.title = '' ratio_exp_error.drawstyle = 'E2' ratio_exp_error.markersize = 0 ratio_exp_error.title = '' ratio_exp_error.fillstyle = '/' ratio_exp_error.color = 'gray' for ithing in [ratio_data, ratio_exp_error]: ithing.xaxis.set_label_size( ithing.xaxis.get_label_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.yaxis.set_label_size( ithing.yaxis.get_label_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.xaxis.set_title_size( ithing.xaxis.get_title_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.yaxis.set_title_size( ithing.yaxis.get_title_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.yaxis.set_ndivisions(405) ithing.yaxis.set_title_offset(0.4) things_to_plot = [ratio_exp_error] if not self.blinded: things_to_plot.append(ratio_data) draw(things_to_plot, xtitle=xlabel, ytitle='obs/exp', pad=self.ratio_pad, logy=False, ylimits=(0.5, 1.5)) line = ROOT.TLine(min(bins), 1., max(bins), 1.) line.SetLineColor(ROOT.kBlack) line.SetLineWidth(1) self.ratio_pad.cd() line.Draw('same') # chi2_score_text = '\chi^{2}/NDF = %.1f' %(all_obs_prompt.Chi2Test(hist_error, 'UW CHI2/NDF')) chi2_score_text = 'p-value = %.2f' % (all_obs_prompt.Chi2Test( hist_error, 'UW')) chi2_score = ROOT.TLatex(0.7, 0.81, chi2_score_text) chi2_score.SetTextFont(43) chi2_score.SetTextSize(15) chi2_score.SetNDC() chi2_score.Draw('same') self.canvas.cd() # FIXME! add SS and OS channels if self.full_channel == 'mmm': channel = '\mu\mu\mu' elif self.full_channel == 'eee': channel = 'eee' elif self.full_channel == 'mem_os': channel = '\mu^{\pm}\mu^{\mp}e' elif self.full_channel == 'mem_ss': channel = '\mu^{\pm}\mu^{\pm}e' elif self.full_channel == 'eem_os': channel = 'e^{\pm}e^{\mp}\mu' elif self.full_channel == 'eem_ss': channel = 'e^{\pm}e^{\pm}\mu' else: assert False, 'ERROR: Channel not valid.' finalstate = ROOT.TLatex(0.68, 0.68, channel) finalstate.SetTextFont(43) finalstate.SetTextSize(25) finalstate.SetNDC() finalstate.Draw('same') self.canvas.cd() # remove old legend for iprim in self.canvas.primitives: if isinstance(iprim, Legend): self.canvas.primitives.remove(iprim) legend.Draw('same') if self.plot_signals: legend_signals.Draw('same') CMS_lumi(self.main_pad, 4, 0, lumi_13TeV="%d, L = %.1f fb^{-1}" % (self.year, self.lumi / 1000.)) self.canvas.Modified() self.canvas.Update() for iformat in ['pdf', 'png', 'root']: self.canvas.SaveAs('/'.join([ self.plt_dir, 'log' if islogy else 'lin', iformat if iformat != 'pdf' else '', '%s%s.%s' % (label, '_log' if islogy else '_lin', iformat) ])) # plot distributions in loose not tight # check MC contamination there if self.data_driven and variable not in ['fr', 'fr_corr']: things_to_plot = [ stack_control, hist_error_control, all_obs_nonprompt_control ] # set the y axis range # FIXME! setting it by hand to each object as it doesn't work if passed to draw if islogy: yaxis_max = 40. * max( [ithing.max() for ithing in things_to_plot]) else: yaxis_max = 1.65 * max( [ithing.max() for ithing in things_to_plot]) if islogy: yaxis_min = 0.01 else: yaxis_min = 0. for ithing in things_to_plot: ithing.SetMaximum(yaxis_max) ithing.SetMinimum(yaxis_min) draw(things_to_plot, xtitle=xlabel, ytitle=ylabel, pad=self.main_pad, logy=islogy, ylimits=(yaxis_min, yaxis_max)) new_legend = Legend( stack_control.hists + [hist_error_control, all_obs_nonprompt_control], pad=self.main_pad, leftmargin=0., rightmargin=0., topmargin=0., textfont=42, textsize=0.03, entrysep=0.01, entryheight=0.04) new_legend.SetBorderSize(0) new_legend.x1 = 0.55 new_legend.y1 = 0.71 new_legend.x2 = 0.88 new_legend.y2 = 0.90 new_legend.SetFillColor(0) # divide MC to subtract by data stack_nonprompt_control_scaled_list = [] for ihist in stack_control.hists: new_hist = copy(ihist) for ibin in new_hist.bins_range(): new_hist.SetBinContent( ibin, np.nan_to_num( np.divide( new_hist.GetBinContent(ibin), all_obs_nonprompt_control. GetBinContent(ibin)))) new_hist.SetBinError( ibin, np.nan_to_num( np.divide( new_hist.GetBinError(ibin), all_obs_nonprompt_control. GetBinContent(ibin)))) stack_nonprompt_control_scaled_list.append(new_hist) stack_control_scaled = HistStack( stack_nonprompt_control_scaled_list, drawstyle='HIST', title='') stack_control_scaled_err = stack_control_scaled.sum stack_control_scaled_err.drawstyle = 'E2' stack_control_scaled_err.fillstyle = '/' stack_control_scaled_err.color = 'gray' stack_control_scaled_err.title = 'stat. unc.' stack_control_scaled_err.legendstyle = 'F' draw([stack_control_scaled, stack_control_scaled_err], xtitle=xlabel, ytitle='MC/data', pad=self.ratio_pad, logy=False) stack_control_scaled.xaxis.set_label_size( stack_control_scaled.xaxis.get_label_size() * 3. ) # the scale should match that of the main/ratio pad size ratio stack_control_scaled.yaxis.set_label_size( stack_control_scaled.yaxis.get_label_size() * 3. ) # the scale should match that of the main/ratio pad size ratio stack_control_scaled.xaxis.set_title_size( stack_control_scaled.xaxis.get_title_size() * 3. ) # the scale should match that of the main/ratio pad size ratio stack_control_scaled.yaxis.set_title_size( stack_control_scaled.yaxis.get_title_size() * 3. ) # the scale should match that of the main/ratio pad size ratio stack_control_scaled.yaxis.set_ndivisions(405) stack_control_scaled.yaxis.set_title_offset(0.4) stack_control_scaled.SetMinimum(0.) stack_control_scaled.SetMaximum(1.5) CMS_lumi(self.main_pad, 4, 0, lumi_13TeV="%d, L = %.1f fb^{-1}" % (self.year, self.lumi / 1000.)) self.canvas.cd() # remove old legend for iprim in self.canvas.primitives: if isinstance(iprim, Legend): self.canvas.primitives.remove(iprim) # draw new legend new_legend.Draw('same') self.canvas.Modified() self.canvas.Update() for iformat in ['pdf', 'png', 'root']: self.canvas.SaveAs('/'.join([ self.plt_dir, 'lnt_region', 'log' if islogy else 'lin', iformat if iformat != 'pdf' else '', '%s%s.%s' % (label, '_log' if islogy else '_lin', iformat) ])) # compare shapes in tight and loose not tight # data in tight all_obs_prompt_norm = copy(all_obs_prompt) if all_obs_prompt_norm.integral() != 0: all_obs_prompt_norm.Scale( np.nan_to_num( np.divide(1., all_obs_prompt_norm.integral()))) #import pdb; pdb.set_trace() all_obs_prompt_norm.drawstyle = 'hist e' all_obs_prompt_norm.linecolor = 'black' all_obs_prompt_norm.markersize = 0 all_obs_prompt_norm.legendstyle = 'LE' all_obs_prompt_norm.title = '' all_obs_prompt_norm.label = 'data - tight' # data MC subtracted in loose all_obs_prompt_mc_sub_norm = copy(all_obs_prompt) all_obs_prompt_mc_sub_norm.add(all_exp_prompt, -1) all_obs_prompt_mc_sub_norm.Scale( np.nan_to_num( np.divide(1., all_obs_prompt_mc_sub_norm.integral()))) all_obs_prompt_mc_sub_norm.drawstyle = 'hist e' all_obs_prompt_mc_sub_norm.linecolor = 'green' all_obs_prompt_mc_sub_norm.markersize = 0 all_obs_prompt_mc_sub_norm.legendstyle = 'LE' all_obs_prompt_mc_sub_norm.title = '' all_obs_prompt_mc_sub_norm.label = '(data-MC) - tight' # data in loose all_obs_nonprompt_control_norm = copy( all_obs_nonprompt_control) all_obs_nonprompt_control_norm.Scale( np.nan_to_num( np.divide( 1., all_obs_nonprompt_control_norm.integral()))) all_obs_nonprompt_control_norm.drawstyle = 'hist e' all_obs_nonprompt_control_norm.linecolor = 'red' all_obs_nonprompt_control_norm.markersize = 0 all_obs_nonprompt_control_norm.legendstyle = 'LE' all_obs_nonprompt_control_norm.title = '' all_obs_nonprompt_control_norm.label = 'data - l-n-t' # data MC subtracted in loose all_obs_nonprompt_control_mc_sub_norm = copy( all_obs_nonprompt_control) all_obs_nonprompt_control_mc_sub_norm.add( stack_control.sum, -1) all_obs_nonprompt_control_mc_sub_norm.Scale( np.nan_to_num( np.divide( 1., all_obs_nonprompt_control_mc_sub_norm.integral( )))) all_obs_nonprompt_control_mc_sub_norm.drawstyle = 'hist e' all_obs_nonprompt_control_mc_sub_norm.linecolor = 'blue' all_obs_nonprompt_control_mc_sub_norm.markersize = 0 all_obs_nonprompt_control_mc_sub_norm.legendstyle = 'LE' all_obs_nonprompt_control_mc_sub_norm.title = '' all_obs_nonprompt_control_mc_sub_norm.label = '(data-MC) - l-n-t' things_to_plot = [ all_obs_prompt_norm, all_obs_prompt_mc_sub_norm, all_obs_nonprompt_control_norm, all_obs_nonprompt_control_mc_sub_norm, ] yaxis_max = max([ii.GetMaximum() for ii in things_to_plot]) draw(things_to_plot, xtitle=xlabel, ytitle=ylabel, pad=self.main_pad, logy=islogy, ylimits=(yaxis_min, 1.55 * yaxis_max)) self.canvas.cd() # remove old legend for iprim in self.canvas.primitives: if isinstance(iprim, Legend): self.canvas.primitives.remove(iprim) shape_legend = Legend([], pad=self.main_pad, leftmargin=0., rightmargin=0., topmargin=0., textfont=42, textsize=0.03, entrysep=0.01, entryheight=0.04) shape_legend.AddEntry(all_obs_prompt_norm, all_obs_prompt_norm.label, all_obs_prompt_norm.legendstyle) shape_legend.AddEntry( all_obs_prompt_mc_sub_norm, all_obs_prompt_mc_sub_norm.label, all_obs_prompt_mc_sub_norm.legendstyle) shape_legend.AddEntry( all_obs_nonprompt_control_norm, all_obs_nonprompt_control_norm.label, all_obs_nonprompt_control_norm.legendstyle) shape_legend.AddEntry( all_obs_nonprompt_control_mc_sub_norm, all_obs_nonprompt_control_mc_sub_norm.label, all_obs_nonprompt_control_mc_sub_norm.legendstyle) shape_legend.SetBorderSize(0) shape_legend.x1 = 0.50 shape_legend.y1 = 0.71 shape_legend.x2 = 0.88 shape_legend.y2 = 0.90 shape_legend.SetFillColor(0) shape_legend.Draw('same') # plot ratios all_obs_prompt_norm_ratio = copy(all_obs_prompt_norm) all_obs_prompt_mc_sub_norm_ratio = copy( all_obs_prompt_mc_sub_norm) all_obs_nonprompt_control_norm_ratio = copy( all_obs_nonprompt_control_norm) all_obs_nonprompt_control_mc_sub_norm_ratio = copy( all_obs_nonprompt_control_mc_sub_norm) all_obs_prompt_norm_ratio.Divide( all_obs_prompt_mc_sub_norm_ratio) all_obs_nonprompt_control_norm_ratio.Divide( all_obs_prompt_mc_sub_norm_ratio) all_obs_nonprompt_control_mc_sub_norm_ratio.Divide( all_obs_prompt_mc_sub_norm_ratio) things_to_plot_ratio = [ all_obs_prompt_norm_ratio, all_obs_nonprompt_control_norm_ratio, all_obs_nonprompt_control_mc_sub_norm_ratio, ] for ithing in things_to_plot_ratio: ithing.xaxis.set_label_size( ithing.xaxis.get_label_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.yaxis.set_label_size( ithing.yaxis.get_label_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.xaxis.set_title_size( ithing.xaxis.get_title_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.yaxis.set_title_size( ithing.yaxis.get_title_size() * 3. ) # the scale should match that of the main/ratio pad size ratio ithing.yaxis.set_ndivisions(405) ithing.yaxis.set_title_offset(0.4) ithing.SetMinimum(0.) ithing.SetMaximum(2.) draw(things_to_plot_ratio, xtitle=xlabel, ytitle='1/(data-MC)_{tight}', pad=self.ratio_pad, logy=False, ylimits=(0., 2.)) self.ratio_pad.cd() line.Draw('same') CMS_lumi(self.main_pad, 4, 0, lumi_13TeV="%d, L = %.1f fb^{-1}" % (self.year, self.lumi / 1000.)) self.canvas.Modified() self.canvas.Update() for iformat in ['pdf', 'png', 'root']: self.canvas.SaveAs('/'.join([ self.plt_dir, 'shapes', 'log' if islogy else 'lin', iformat if iformat != 'pdf' else '', '%s%s.%s' % (label, '_log' if islogy else '_lin', iformat) ])) # save only the datacards you want, don't flood everything if len(self.datacards) and label not in self.datacards: continue # FIXME! allow it to save datacards even for non data driven bkgs if self.data_driven: self.create_datacards(data=all_obs_prompt, bkgs={ 'prompt': all_exp_prompt, 'nonprompt': all_exp_nonprompt }, signals=all_signals, label=label)
except: print "stack has no integral!" continue if plotWithMPL: gs = mpl.gridspec.GridSpec(2, 1, height_ratios=[4, 1]) gs.update(wspace=0.00, hspace=0.00) axes = plt.subplot(gs[0]) axes_ratio = plt.subplot(gs[1], sharex=axes) plt.setp(axes.get_xticklabels(), visible=False) if plotWithROOT: c = Canvas(700, 700) c.cd() pad1 = Pad(0, 0.3, 1, 1.0) pad1.SetBottomMargin(0) # Upper and lower plot are joined pad1.SetGrid() # Vertical grid pad1.Draw() # Draw the upper pad: pad1 c.cd() pad2 = Pad(0, 0.05, 1, 0.3) pad2.SetTopMargin(0) # Upper and lower plot are joined pad2.SetBottomMargin(0.3) # Upper and lower plot are joined pad2.SetGrid() # Vertical grid pad2.Draw() # Draw the upper pad: pad1