Esempio n. 1
0
    def testShiftRotateXYZ10(self):
        """
        Shift by 10 in all directions.
        """

        rot = [0, 0, 0]
        shift = [10, 10, 10]

        x = self.x - 10
        y = self.y - 10
        z = self.z - 10

        xr, yr, zr = shiftRotateXYZ(x, y, z, shift + rot)

        np.testing.assert_allclose(xr, self.x, rtol=1e-15, atol=1e-15)
        np.testing.assert_allclose(yr, self.y, rtol=1e-15, atol=1e-15)
        np.testing.assert_allclose(zr, self.z, rtol=1e-15, atol=1e-15)
Esempio n. 2
0
    def testShiftRotateXY90Z(self):
        """
        Rotation along z by 90 degrees.
        """

        rot = [0, 0, np.deg2rad(90)]
        shift = [0, 0, 0]

        x = self.x + 1.
        y = self.y
        z = self.z

        xr, yr, zr = shiftRotateXYZ(x, y, z, shift + rot)

        np.testing.assert_allclose(xr, y, rtol=1e-15, atol=1e-15)
        np.testing.assert_allclose(yr, x, rtol=1e-15, atol=1e-15)
        np.testing.assert_allclose(zr, z, rtol=1e-15, atol=1e-15)
Esempio n. 3
0
    def testShiftRotateXYZ0(self):
        """
        No rotation nor shift.
        """

        rot = [0, 0, 0]
        shift = [0, 0, 0]

        x = self.x + 1.
        y = self.y + 1.
        z = self.z

        xr, yr, zr = shiftRotateXYZ(x, y, z, shift + rot)

        np.testing.assert_array_equal(xr, x)
        np.testing.assert_array_equal(yr, y)
        np.testing.assert_array_equal(zr, z)
Esempio n. 4
0
def maskScan(fn, n=512, rot=0):
    """
    """

    orgData, cleanData = loadLeicaData(fn, n=None, numpy=False)
    x = orgData[0]
    y = orgData[1]
    z = orgData[2]
    xr, yr, zr = shiftRotateXYZ(x, y, z, [0, 0, 0, 0, 0, np.deg2rad(rot)])

    xga, yga, zga = maskScanXYZ(xr,
                                yr,
                                zr,
                                n=512,
                                outMaskThreshold=4,
                                inMaskThreshold=3,
                                inMaskClip=5)

    return xga, yga, zga
Esempio n. 5
0
def processNewPTXData(lines,
                      xyzi=None,
                      dts=None,
                      plotTest=True,
                      rot=None,
                      sampleSize=None,
                      iFilter=False,
                      nFilter=True,
                      rFilter=True,
                      filterClose=True,
                      filterParaboloid=True,
                      ellipse=[-8., 50., 49., 49., 0.],
                      residual_threshold=0.008):
    """
    
    """

    "this is the processing we see works with 2019 data"

    if rot is None:
        rot = -90.0
    if ellipse is None:
        warnings.warn("No ellipse given. Will use default values.")
        ellipse = [-8., 50., 49., 49., 0.]

    print("ProcessNewPTXData with: ", ellipse)

    if plotTest and lines is not None:
        # make some plots that ensure how we are doing
        # our radial filtering
        tryEllipticalOffsets(lines, ellipse)

    if lines is not None:
        # Get the actual float values from the file contents.
        x, y, z, i = getRawXYZ(lines, sampleSize=sampleSize)
    else:
        x, y, z, i = xyzi

    print("Starting with %d lines of data" % len(x))

    # First remove all the zero data.
    print("Filtering measurements with zero intensity.")
    mask = i != 0.0
    intensity = i[mask]
    x = x[mask]
    y = y[mask]
    z = z[mask]
    if dts is not None:
        dts = dts[mask]

    printMaskStats(mask)

    # Remove aggregious jumps in data?
    if nFilter:
        print("Neighbor filter.")
        # TBF: document where our tolerance comes from
        x, y, z, mask = neighborFilter(x, y, z, 0.122)
        intensity = intensity[mask]
        print("Now we have %d lines of data" % len(x))
        if dts is not None:
            dts = dts[mask]

    # We only want data that has a decent intesity.
    meanI = np.mean(intensity)
    stdI = np.std(intensity)
    print("Intensity: max=%5.2f, min=%5.2f, mean=%5.2f, std=%5.2f" %
          (np.max(intensity), np.min(intensity), meanI, stdI))

    if False:  # iFilter
        mask = np.logical_and(intensity > 0.75, intensity < 0.85)
        intensity = intensity[mask]
        x = x[mask]
        y = y[mask]
        z = z[mask]
        if dts is not None:
            dts = dts[mask]
        numFilteredOut = len(x) - len(intensity)
        percent = (float(numFilteredOut) / float(len(x))) * 100.
        print("Filtered out %d points of %d (%5.2f%%) via intensity" %
              (numFilteredOut, len(x), percent))
        print(("Now we have %d lines of data" % len(x)))

    assert len(x) == len(y)
    assert len(y) == len(z)
    assert len(z) == len(intensity)

    # Save the point cloud thus far for the paraboloid filter.
    x_p = copy(x)
    y_p = copy(y)
    z_p = copy(z)
    i_p = copy(intensity)

    # We want as much as possible of the dish.
    # Since the dish will be rotated, it will look like an ellipse to the TLS.
    # This filter is later superseded by the paraboloid filter, but it is
    # necessary to find a best fit paraboloid.
    if rFilter:
        orgNum = len(x)
        print('Elliptical filter.')
        print(
            "The ellipse has semi-major axis {0:.2f} m, semi-minor axis {1:.2f} m and angle {2:.2f} degrees"
            .format(ellipse[2], ellipse[3], ellipse[4]))
        x, y, z, dts, intensity = ellipticalFilter(x,
                                                   y,
                                                   z,
                                                   ellipse[0],
                                                   ellipse[1],
                                                   ellipse[2],
                                                   ellipse[3],
                                                   ellipse[4],
                                                   dts=dts,
                                                   intensity=intensity)
        newNum = len(x)
        print(
            "Elliptical filter removed {0} points outside the ellipse".format(
                orgNum - newNum))
        print("Now we have %d lines of data" % len(x))

    # The scanner is upside down.
    z = -z

    # Filter points below the dish.
    print("z filter.")
    zLimit = -80
    x, y, z, dts, intensity = zLimitFilter(x,
                                           y,
                                           z,
                                           zLimit=zLimit,
                                           dts=dts,
                                           intensity=intensity)

    if filterClose:
        tooClose = 10.
        print("Removing points closer than {0:.2f} m from the scanner.".format(
            tooClose))
        # Removes points that are closer than 10 m from the scanner.
        x, y, z, dts, intensity = nearFilter(x,
                                             y,
                                             z,
                                             tol=tooClose,
                                             dts=dts,
                                             intensity=intensity)

    # Rotate the data for the paraboloid filter.
    print("Rotating about z by {0:5.2f} degrees.".format(rot))
    xr, yr, zr = shiftRotateXYZ(x, y, z, [0, 0, 0, 0, 0, np.deg2rad(rot)])

    if filterParaboloid:

        print("Paraboloid filter.")

        perc = 0.01
        print("Fitting a paraboloid to {}% of the data.".format(perc * 100.))
        sampleSize = int(len(xr) * perc)
        lsIdx = random.sample(range(len(xr)), sampleSize)
        xs = xr[lsIdx]
        ys = yr[lsIdx]
        zs = zr[lsIdx]

        # Fit a parabola to the data.
        pMask, _ = paraboloidFilter(xs, ys, zs, threshold=3)

        # Fit the paraboloid again, discarding the already filtered values.
        print("Fitting paraboloid again to the un-filtered values.")
        xs = xs[pMask]
        ys = ys[pMask]
        zs = zs[pMask]
        pMask, paraFit = paraboloidFilter(xs, ys, zs, threshold=3)

        print(
            "Applying paraboloid filter to the data before the elliptical filter."
        )
        x = x_p
        y = y_p
        z = z_p
        i = i_p
        z = -z
        x, y, z = shiftRotateXYZ(x, y, z, [0, 0, 0, 0, 0, np.deg2rad(rot)])
        print("Number of data points: {}".format(len(z)))

        pMask = paraboloidMask(x, y, z, paraFit, threshold=2)

        print("Applying paraboloid filter to the data.")
        printMaskStats(pMask)

        x = x[pMask]
        y = y[pMask]
        z = z[pMask]
        i = i[pMask]

        # Rotate and shift the range measurements.
        #cor = np.hstack((-1*paraFit[1:4],paraFit[4:6],0))
        #xrp, yrp, zrp = shiftRotateXYZ(x, y, z, cor)
        xrp, yrp, zrp = align2Paraboloid(x, y, z, paraFit)

        # Use a circle to mask data outside of the primary reflector.
        r = 51
        xc = np.mean((np.nanmax(xrp) - r, np.nanmin(xrp) + r))
        yc = np.nanmax(yrp) - r
        rMask = radialMask(xrp, yrp, r, xc=xc, yc=yc)

        x = x[rMask]
        y = y[rMask]
        z = z[rMask]
        i = i[rMask]

        print("Applying circular mask to the paraboloid filtered data.")
        printMaskStats(rMask)

        #cor = np.hstack((-1*paraFit[1:4],paraFit[4:6],0))
        #xr, yr, zr = shiftRotateXYZ(x, y, z, cor)

        ## Rotate and shift the range measurements.
        #cor = np.hstack((-1*c[1:4],c[4:6],0))
        #xr, yr, zr = shiftRotateXYZ(x, y, z, cor)
        ## Build a parabola using the best fit parameters.
        #zp = paraboloid(xr, yr, c[0])

        ## Compute the residuals between the parabola and the rotated range measurements.
        #diff = zr - zp
        ## Only keep range measurements whose residuals are less than residual_threshold.
        ##print("Removing points with residuals larger than {}".format(residual_threshold))
        ##mask = abs(diff) < residual_threshold
        #mdiff = sigma_clip(diff, 3)
        #mask = ~mdiff.mask
        #percent = mask.sum()/len(mask) * 100.
        #print("Parabola filter will remove {0:.2f}% of the data.".format(100. - percent))
        #print("Keeping {} out of {} points.".format(mask.sum(), len(mask)))

        ## Use the rotated range measurements for the last filter.
        #xr = xr[mask]
        #yr = yr[mask]
        #zr = zr[mask]

        #x = x[mask]
        #y = y[mask]
        #z = z[mask]
        #intensity = intensity[mask]

        ## Only keep range measurements within a circle of radius r.
        #r = 51 # m
        #xc = np.nanmin(xr) + r
        #yc = np.nanmin(yr) + r
        #circular_mask = (xr - xc)**2 + (yr - yc)**2 <= r**2.

        #x = x[circular_mask]
        #y = y[circular_mask]
        #z = z[circular_mask]
        #intensity = intensity[circular_mask]

        #print("Keeping {} points inside a circle of radius {} m and center ({},{}) m.".format(circular_mask.sum(), r, xc, yc))

    # Rotate around the z axis since the scanner coordinate system does not match the telescope's.
    #if rot is not None or rot != 0.0:
    #    print("Rotating about z by %5.2f degrees" % rot)
    #    xr, yr, zr = shiftRotateXYZ(x, y, z, [0, 0, 0, 0, 0, np.deg2rad(rot)])

    # Create a Nx3 matrix for the coordinates.
    xyz = np.c_[x, y, z]

    if plotTest:
        print("Plotting.")

        xlim = (-100, 100)
        ylim = (-100, 100)
        fig, ax = scatter3dPlot(xr,
                                yr,
                                zr,
                                "Sampling of processed data",
                                xlim=xlim,
                                ylim=ylim,
                                sample=1)

        # take a look at the x y orientation
        f = plt.figure()
        ax = f.gca()
        ax.plot(xr, yr, 'bo', [0], [0], '*')
        plt.xlabel("x")
        plt.ylabel("y")
        plt.title("X Y orientation of data")

    print("XYZ output of ProcessNewPTXData has {0} lines of data.".format(
        len(xyz)))
    print(
        "Intensity output of ProcessNewPTXData has {0} lines of data.".format(
            len(intensity)))

    return xyz, dts, i
Esempio n. 6
0
def maskXYZ(x,
            y,
            z,
            n=512,
            guess=[60., 0., 0., 0., 0., 0.],
            bounds=None,
            radialMask=True,
            maskRadius=40.,
            poly_order=2,
            **kwargs):
    """
    """

    xf = x[~np.isnan(z)]
    yf = y[~np.isnan(z)]
    zf = z[~np.isnan(z)]

    # Use masked arrays on the input data to avoid warnings.
    x = np.ma.masked_invalid(x)
    y = np.ma.masked_invalid(y)
    z = np.ma.masked_invalid(z)

    # Fit a parabola to the data.
    fitresult = fitLeicaData(xf, yf, zf, guess, bounds=bounds, weights=None)

    # Subtract the fitted parabola from the data.
    # The difference should be flat.
    c = fitresult.x
    zp = paraboloid(x, y, c[0])
    cor = np.hstack((-1 * c[1:4], c[4:6], 0))
    xrr, yrr, zrr = shiftRotateXYZ(x, y, z, cor)
    diff = zrr - zp

    if radialMask:
        xc = midPoint(xrr)
        yc = midPoint(yrr)
        mask = (((xrr - xc)**2. + (yrr - yc)**2.) < maskRadius**2.)
        mdiff = np.ma.masked_where(~mask, diff)
    else:
        mdiff = diff

    # Mask any pixels which deviate from the noise.
    # This should mask out retroreflectors, misaligned panels and sub-scans where the TLS moved due to wind.
    mcdiff = sigma_clip(mdiff)

    # Apply the mask to the original data and repeat once more.
    # In the end also fit a parabola to each row in the data, and mask outliers.
    # This allows to find more subtle features in the data.
    xf = np.ma.masked_where(mcdiff.mask, x)
    yf = np.ma.masked_where(mcdiff.mask, y)
    zf = np.ma.masked_where(mcdiff.mask, z)

    masked_fitresult = fitLeicaData(xf.compressed(),
                                    yf.compressed(),
                                    zf.compressed(),
                                    guess,
                                    bounds=bounds,
                                    weights=None)

    c = masked_fitresult.x
    zp = paraboloid(x, y, c[0])
    cor = np.hstack((-1 * c[1:4], c[4:6], 0))
    xrrm, yrrm, zrrm = shiftRotateXYZ(x, y, z, cor)
    masked_diff = zrrm - zp

    mcdiff2 = masked_diff

    # Final mask.
    map_mask = np.zeros((n, n), dtype=bool)

    xl = np.linspace(0, n, n)

    # Loop over rows fitting a parabola and masking any pixels that deviate from noise.
    for i in range(0, n):

        yl = mcdiff2[i]

        if len(xl[~yl.mask]) > 3:

            poly_c = np.polyfit(xl[~yl.mask], yl[~yl.mask], poly_order)
            poly_f = np.poly1d(poly_c)

            res = np.ma.masked_invalid(yl - poly_f(xl))
            res_sc = sigma_clip(res, **kwargs)

            map_mask[i] = res_sc.mask

        else:

            map_mask[i] = True

    # Prepare output.
    origData = (x, y, z)

    origMaskedData = (np.ma.masked_where(map_mask,
                                         x), np.ma.masked_where(map_mask, y),
                      np.ma.masked_where(map_mask, z))

    rotatedData = (xrrm, yrrm, np.ma.masked_where(map_mask, zrrm))

    fitResidual = np.ma.masked_where(map_mask, zrrm - zp)

    parabolaFit = (xrrm, yrrm, zp)

    outData = {
        'origData': origData,
        'origMasked': origMaskedData,
        'rotated': rotatedData,
        'fitResidual': fitResidual,
        'parabolaFit': parabolaFit,
        'parabolaFitCoeffs': c
    }

    return outData