def get_mean_time_series(path = 'data/CORDEX/NA'): forecastHourToValue = {} surface_runoff_name = 'TRAF' subsurface_runoff_name = 'TDRA' level_tdra = 5 level_traf = 1 for theFolder in os.listdir(path): folderPath = os.path.join(path, theFolder) if not os.path.isdir(folderPath): continue for theFile in os.listdir(folderPath): rpnObj = rpn.RPN(os.path.join(folderPath, theFile)) # @type rpnObj RPN hours = rpnObj.get_current_validity_date() print('hours = ', hours) surf_runoff = rpnObj.get_first_record_for_name_and_level(surface_runoff_name, level_traf) subsurf_runoff = rpnObj.get_first_record_for_name_and_level(subsurface_runoff_name, level_tdra) surf_runoff = np.mean(surf_runoff) subsurf_runoff = np.mean(subsurf_runoff) forecastHourToValue[hours] = [surf_runoff, surf_runoff + subsurf_runoff] rpnObj.close() return forecastHourToValue
def main(argv=None): with tf.device("/" + FLAGS.cpu_mode + ":0"): images = tf.placeholder(tf.float32, [1, None, None, 3]) with tf.variable_scope("zfnet", reuse=None): pre_model = zfnet.ZFNet(images, None, 0, "tunning", "zfnet") feature_map = tf.placeholder(tf.float32, [1, None, None, 256]) gt_box = tf.placeholder(tf.float32, [1, None, 5]) img_size = tf.placeholder(tf.float32, [None, 3]) with tf.variable_scope("rpn", reuse=None): model = rpn.RPN(pre_model, feature_map, gt_box, img_size, "rpn") session = tf.Session() pre_model.set_session(session) assert pre_model.load_model(FLAGS.pre_model_dir) == 0 model.set_session(session) model.set_para(FLAGS.save_dir, FLAGS.log_dir, FLAGS.lr) model.train(data_func)
indices[:, 0], [7, 7], method="bilinear") print(new_rois.shape) start = 0 for j in range(proposals.shape[0]): count = tf.where(tf.equal(indices[:, 0], j)).shape[0] rois_by_images[j].extend(new_rois[start : start + count]) start = count print("kraj") rois = tf.ragged.constant(rois_by_images) print(rois.shape) return if __name__ == "__main__": #np.random.seed(100) tf.random.set_seed(110) anchors = anchor_utils.get_all_anchors((512, 512), [64, 128, 256, 512, 1024], [(1, 1), (1, 2), (2, 1)]) rpn_model = rpn.RPN(Resnet34_FPN(), 3) #weights_path = "weights.ckpt" #rpn_model.load_weights(weights_path) num_classes = len(config.CLASSES) model = Mask_RCNN(rpn_model, anchors, num_classes) #ds = dataset_util.VOC2012_Dataset("DATASET/VOC2012/VOC2012", "/train_list.txt", 2) ds = dataset_util.VOC2012_Dataset("dataset/VOC2012", "/train_list.txt", 2) data1, data2, data3, data5, d4 = ds.next_batch() data2, data3 = anchor_utils.get_rpn_classes_and_bbox_deltas(len(data1), anchors, data2) a, b, c, d, e = model([data1, d4], training=True)
bigger_loss_in_row = 0 else: bigger_loss_in_row += 1 if bigger_loss_in_row == 1000: print("{}. bigger loss in row, exiting".format( bigger_loss_in_row)) sys.exit(0) if __name__ == "__main__": anchors = anchor_utils.get_all_anchors_for_c5([16, 16], 128**2, config.ANCHOR_RATIOS) backbone2 = backbone.Resnet34_FPN() model = rpn.RPN(backbone2, 3) optimizer = tf.keras.optimizers.SGD(lr=0.0005, momentum=0.9, decay=1e-4) checkpoint = tf.train.Checkpoint(optimizer=optimizer, net=model, step=tf.Variable(1)) manager = tf.train.CheckpointManager(checkpoint, config.WEIGHTS_DIR, max_to_keep=4) train_dataset = dataset_util.VOC2012_Dataset("DATASET/VOC2012/VOC2012", "/train_list.txt", 20) # train_dataset = dataset_util.VOC2012_Dataset("dataset/VOC2012", "/train_list.txt", 2) valid_dataset = dataset_util.VOC2012_Dataset("DATASET/VOC2012/VOC2012", "/valid_list.txt", 20) # valid_dataset = dataset_util.VOC2012_Dataset("dataset/VOC2012", "/valid_list.txt", 2)
import numpy import rpn rpnBasic = rpn.RPN(float) print(rpnBasic.parse("2 3 *")) rpnComplex = rpn.RPN(complex, operators={"C": lambda a: numpy.conj(a)}) print(rpnComplex.parse("2+1j 7j * C"))
import dataset_util import anchor_utils import tensorflow as tf import config import mask_rcnn import numpy as np import image_util import metrics ds = dataset_util.VOC2012_Dataset("dataset/VOC2012", "/valid_list.txt", 2) #ds = dataset_util.VOC2012_Dataset("dataset/TEST", "/test_list.txt", 2) anchors = anchor_utils.get_all_anchors(config.IMAGE_SIZE, config.ANCHOR_SCALES, config.ANCHOR_RATIOS) backbone2 = backbone.Resnet34_FPN() rpn2 = rpn.RPN(backbone2, 3) model = mask_rcnn.Mask_RCNN(rpn2, anchors, len(config.CLASSES)) checkpoint = tf.train.Checkpoint(net=model, step=tf.Variable(1)) manager = tf.train.CheckpointManager(checkpoint, config.WEIGHTS_DIR, max_to_keep=4) if manager.latest_checkpoint: print("Restoring...", manager.latest_checkpoint) model([ np.random.rand(1, config.IMAGE_SIZE[0], config.IMAGE_SIZE[1], 3), np.array([[500, 500]]) ], training=False) checkpoint.restore(manager.latest_checkpoint).expect_partial()