Esempio n. 1
0
    def __init__(self, path):
        if not os.path.exists(path):
            raise RuntimeError('bundle path {} not exist'.format(os.path.abspath(path)))

        def _p(name):
            return os.path.join(path, name)

        self._day_bars = [
            DayBarStore(_p('stocks.bcolz'), StockBarConverter),
            DayBarStore(_p('indexes.bcolz'), IndexBarConverter),
            DayBarStore(_p('futures.bcolz'), FutureDayBarConverter),
            DayBarStore(_p('funds.bcolz'), FundDayBarConverter),
        ]

        self._instruments = InstrumentStore(_p('instruments.pk'))
        self._dividends = DividendStore(_p('original_dividends.bcolz'))
        self._trading_dates = TradingDatesStore(_p('trading_dates.bcolz'))
        self._yield_curve = YieldCurveStore(_p('yield_curve.bcolz'))
        self._split_factor = SimpleFactorStore(_p('split_factor.bcolz'))
        self._ex_cum_factor = SimpleFactorStore(_p('ex_cum_factor.bcolz'))
        self._share_transformation = ShareTransformationStore(_p('share_transformation.json'))

        self._st_stock_days = DateSet(_p('st_stock_days.bcolz'))
        self._suspend_days = DateSet(_p('suspended_days.bcolz'))

        self.get_yield_curve = self._yield_curve.get_yield_curve
        self.get_risk_free_rate = self._yield_curve.get_risk_free_rate
        if os.path.exists(_p('public_funds.bcolz')):
            self._day_bars.append(DayBarStore(_p('public_funds.bcolz'), PublicFundDayBarConverter))
            self._public_fund_dividends = DividendStore(_p('public_fund_dividends.bcolz'))
            self._non_subscribable_days = DateSet(_p('non_subscribable_days.bcolz'))
            self._non_redeemable_days = DateSet(_p('non_redeemable_days.bcolz'))
 def __init__(self, host='127.0.0.1', port=27017, database='emquant'):
     self.client = MongoClient(host, port)
     try:
         # The ismaster command is cheap and does not require auth.
         self.client.admin.command('ismaster')
     except ConnectionFailure as err:
         print('Failed to establish connection to MongoDB: %s' % err)
     self.db = self.client[database]
     self._instruments = self.get_instruments_from_mongo()
     self._trading_dates = self.get_trading_dates_from_mongo(
         TRADING_DATES_REF_CODE)
     self._yield_curve = YieldCurveStore(
         '/root/.rqalpha/bundle/yield_curve.bcolz')
Esempio n. 3
0
    def __init__(self, path):
        if not os.path.exists(path):
            raise RuntimeError('bundle path {} not exist'.format(os.path.abspath(path)))

        def _p(name):
            return os.path.join(path, name)

        self._day_bars = [
            DayBarStore(_p('stocks.bcolz'), StockBarConverter),
            DayBarStore(_p('indexes.bcolz'), IndexBarConverter),
            DayBarStore(_p('futures.bcolz'), FutureDayBarConverter),
            DayBarStore(_p('funds.bcolz'), FundDayBarConverter),
        ]

        self._instruments = InstrumentStore(_p('instruments.pk'))
        self._dividends = DividendStore(_p('original_dividends.bcolz'))
        self._trading_dates = TradingDatesStore(_p('trading_dates.bcolz'))
        self._yield_curve = YieldCurveStore(_p('yield_curve.bcolz'))
        self._split_factor = SimpleFactorStore(_p('split_factor.bcolz'))
        self._ex_cum_factor = SimpleFactorStore(_p('ex_cum_factor.bcolz'))

        self._st_stock_days = DateSet(_p('st_stock_days.bcolz'))
        self._suspend_days = DateSet(_p('suspended_days.bcolz'))

        self.get_yield_curve = self._yield_curve.get_yield_curve
        self.get_risk_free_rate = self._yield_curve.get_risk_free_rate
        if os.path.exists(_p('public_funds.bcolz')):
            self._day_bars.append(DayBarStore(_p('public_funds.bcolz'), PublicFundDayBarConverter))
            self._public_fund_dividends = DividendStore(_p('public_fund_dividends.bcolz'))
            self._non_subscribable_days = DateSet(_p('non_subscribable_days.bcolz'))
            self._non_redeemable_days = DateSet(_p('non_redeemable_days.bcolz'))
Esempio n. 4
0
    def __init__(self, path):
        if not os.path.exists(path):
            raise RuntimeError('bundle path {} not exist'.format(
                os.path.abspath(path)))

        def _p(name):
            return os.path.join(path, name)

        self._market = Environment.get_instance().config.base.market

        if self._market == MARKET.CN:
            self._day_bars = [
                DayBarStore(_p('stocks.bcolz'), StockBarConverter),
                DayBarStore(_p('indexes.bcolz'), IndexBarConverter),
                DayBarStore(_p('futures.bcolz'), FutureDayBarConverter),
                DayBarStore(_p('funds.bcolz'), FundDayBarConverter),
            ]

            self._instruments = InstrumentStore(_p('instruments.pk'))
            self._dividends = DividendStore(_p('original_dividends.bcolz'))
            self._trading_dates = TradingDatesStore(_p('trading_dates.bcolz'))
            self._yield_curve = YieldCurveStore(_p('yield_curve.bcolz'))
            self._split_factor = SimpleFactorStore(_p('split_factor.bcolz'))
            self._ex_cum_factor = SimpleFactorStore(_p('ex_cum_factor.bcolz'))

            self._st_stock_days = DateSet(_p('st_stock_days.bcolz'))
            self._suspend_days = DateSet(_p('suspended_days.bcolz'))

            self.get_yield_curve = self._yield_curve.get_yield_curve
            self.get_risk_free_rate = self._yield_curve.get_risk_free_rate
            if os.path.exists(_p('public_funds.bcolz')):
                self._day_bars.append(
                    DayBarStore(_p('public_funds.bcolz'),
                                PublicFundDayBarConverter))
                self._public_fund_dividends = DividendStore(
                    _p('public_fund_dividends.bcolz'))
                self._non_subscribable_days = DateSet(
                    _p('non_subscribable_days.bcolz'))
                self._non_redeemable_days = DateSet(
                    _p('non_redeemable_days.bcolz'))

        elif self._market == MARKET.HK:
            self._day_bars = [
                HkDayBarStore(_p("hk_stocks.bcolz"), HkStockBarConverter)
            ]
            self._instruments = InstrumentStore(_p("hk_instruments.pk"))
            self._dividends = HkDividendStore(_p('hk_dividend.bcolz'))
            self._trading_dates = TradingDatesStore(
                _p("hk_trading_dates.bcolz"))
            self._yield_curve = HkYieldCurveMocker()
            self._split_factor = SimpleFactorStore(_p('hk_split_factor.bcolz'))
            self._ex_cum_factor = SimpleFactorStore(
                _p("hk_ex_cum_factor.bcolz"))
            self._suspend_days = DateSet(_p('hk_suspended_days.bcolz'))
        else:
            raise NotImplementedError
class BaseDataSource(AbstractDataSource):
    def __init__(self, path):
        if not os.path.exists(path):
            raise RuntimeError('bundle path {} not exist'.format(
                os.path.abspath(path)))

        def _p(name):
            return os.path.join(path, name)

        self._day_bars = [
            DayBarStore(_p('stocks.bcolz'), StockBarConverter),
            DayBarStore(_p('indexes.bcolz'), IndexBarConverter),
            DayBarStore(_p('futures.bcolz'), FutureDayBarConverter),
            DayBarStore(_p('funds.bcolz'), FundDayBarConverter),
        ]

        self._instruments = InstrumentStore(_p('instruments.pk'))
        self._dividends = DividendStore(_p('original_dividends.bcolz'))
        self._trading_dates = TradingDatesStore(_p('trading_dates.bcolz'))
        self._yield_curve = YieldCurveStore(_p('yield_curve.bcolz'))
        self._split_factor = SimpleFactorStore(_p('split_factor.bcolz'))
        self._ex_cum_factor = SimpleFactorStore(_p('ex_cum_factor.bcolz'))

        self._st_stock_days = DateSet(_p('st_stock_days.bcolz'))
        self._suspend_days = DateSet(_p('suspended_days.bcolz'))

        self.get_yield_curve = self._yield_curve.get_yield_curve
        self.get_risk_free_rate = self._yield_curve.get_risk_free_rate
        if os.path.exists(_p('public_funds.bcolz')):
            self._day_bars.append(
                DayBarStore(_p('public_funds.bcolz'),
                            PublicFundDayBarConverter))
            self._public_fund_dividends = DividendStore(
                _p('public_fund_dividends.bcolz'))
            self._non_subscribable_days = DateSet(
                _p('non_subscribable_days.bcolz'))
            self._non_redeemable_days = DateSet(
                _p('non_redeemable_days.bcolz'))

    def get_dividend(self, order_book_id, public_fund=False):
        if public_fund:
            return self._public_fund_dividends.get_dividend(order_book_id)
        return self._dividends.get_dividend(order_book_id)

    def get_trading_minutes_for(self, order_book_id, trading_dt):
        raise NotImplementedError

    def get_trading_calendar(self):
        return self._trading_dates.get_trading_calendar()

    def get_all_instruments(self):
        return self._instruments.get_all_instruments()

    def is_suspended(self, order_book_id, dates):
        return self._suspend_days.contains(order_book_id, dates)

    def is_st_stock(self, order_book_id, dates):
        return self._st_stock_days.contains(order_book_id, dates)

    INSTRUMENT_TYPE_MAP = {
        'CS': 0,
        'INDX': 1,
        'Future': 2,
        'ETF': 3,
        'LOF': 3,
        'FenjiA': 3,
        'FenjiB': 3,
        'FenjiMu': 3,
        'PublicFund': 4
    }

    def _index_of(self, instrument):
        return self.INSTRUMENT_TYPE_MAP[instrument.type]

    @lru_cache(None)
    def _all_day_bars_of(self, instrument):
        i = self._index_of(instrument)
        return self._day_bars[i].get_bars(instrument.order_book_id,
                                          fields=None)

    @lru_cache(None)
    def _filtered_day_bars(self, instrument):
        bars = self._all_day_bars_of(instrument)
        if bars is None:
            return None
        return bars[bars['volume'] > 0]

    def get_bar(self, instrument, dt, frequency):
        if frequency != '1d':
            raise NotImplementedError

        bars = self._all_day_bars_of(instrument)
        if bars is None:
            return
        dt = np.uint64(convert_date_to_int(dt))
        pos = bars['datetime'].searchsorted(dt)
        if pos >= len(bars) or bars['datetime'][pos] != dt:
            return None

        return bars[pos]

    def get_settle_price(self, instrument, date):
        bar = self.get_bar(instrument, date, '1d')
        if bar is None:
            return np.nan
        return bar['settlement']

    @staticmethod
    def _are_fields_valid(fields, valid_fields):
        if fields is None:
            return True
        if isinstance(fields, six.string_types):
            return fields in valid_fields
        for field in fields:
            if field not in valid_fields:
                return False
        return True

    def get_ex_cum_factor(self, order_book_id):
        return self._ex_cum_factor.get_factors(order_book_id)

    def history_bars(self,
                     instrument,
                     bar_count,
                     frequency,
                     fields,
                     dt,
                     skip_suspended=True,
                     include_now=False,
                     adjust_type='pre',
                     adjust_orig=None):
        if frequency != '1d':
            raise NotImplementedError

        if skip_suspended and instrument.type == 'CS':
            bars = self._filtered_day_bars(instrument)
        else:
            bars = self._all_day_bars_of(instrument)

        if bars is None or not self._are_fields_valid(fields,
                                                      bars.dtype.names):
            return None

        dt = np.uint64(convert_date_to_int(dt))
        i = bars['datetime'].searchsorted(dt, side='right')
        left = i - bar_count if i >= bar_count else 0
        bars = bars[left:i]
        if adjust_type == 'none' or instrument.type in {'Future', 'INDX'}:
            # 期货及指数无需复权
            return bars if fields is None else bars[fields]

        if isinstance(fields, str) and fields not in FIELDS_REQUIRE_ADJUSTMENT:
            return bars if fields is None else bars[fields]

        return adjust_bars(bars,
                           self.get_ex_cum_factor(instrument.order_book_id),
                           fields, adjust_type, adjust_orig)

    def get_yield_curve(self, start_date, end_date, tenor=None):
        return self._yield_curve.get_yield_curve(start_date, end_date, tenor)

    def get_risk_free_rate(self, start_date, end_date):
        return self._yield_curve.get_risk_free_rate(start_date, end_date)

    def current_snapshot(self, instrument, frequency, dt):
        raise NotImplementedError

    def get_split(self, order_book_id):
        return self._split_factor.get_factors(order_book_id)

    def available_data_range(self, frequency):
        if frequency in ['tick', '1d']:
            s, e = self._day_bars[
                self.INSTRUMENT_TYPE_MAP['INDX']].get_date_range('000001.XSHG')
            return convert_int_to_date(s).date(), convert_int_to_date(e).date()

        raise NotImplementedError

    def get_margin_info(self, instrument):
        return {
            'margin_type': MARGIN_TYPE.BY_MONEY,
            'long_margin_ratio': instrument.margin_rate,
            'short_margin_ratio': instrument.margin_rate,
        }

    def get_commission_info(self, instrument):
        return CN_FUTURE_INFO[instrument.underlying_symbol]['speculation']

    def get_ticks(self, order_book_id, date):
        raise NotImplementedError

    def public_fund_commission(self, instrument, buy):
        if buy:
            return PUBLIC_FUND_COMMISSION[instrument.fund_type]['Buy']
        else:
            return PUBLIC_FUND_COMMISSION[instrument.fund_type]['Sell']

    def non_subscribable(self, order_book_id, dates):
        return self._non_subscribable_days.contains(order_book_id, dates)

    def non_redeemable(self, order_book_id, dates):
        return self._non_redeemable_days.contains(order_book_id, dates)

    def get_tick_size(self, instrument):
        if instrument.type in ['CS', 'INDX']:
            return 0.01
        elif instrument.type in ['ETF', 'LOF', 'FenjiB', 'FenjiA', 'FenjiMu']:
            return 0.001
        elif instrument.type == 'Future':
            return CN_FUTURE_INFO[
                instrument.underlying_symbol]['speculation']['tick_size']
        else:
            # NOTE: you can override get_tick_size in your custom data source
            raise RuntimeError(_("Unsupported instrument type for tick size"))
Esempio n. 6
0
class BaseDataSource(AbstractDataSource):
    def __init__(self, path):
        if not os.path.exists(path):
            raise RuntimeError('bundle path {} not exist'.format(os.path.abspath(path)))

        def _p(name):
            return os.path.join(path, name)

        self._day_bars = [
            DayBarStore(_p('stocks.bcolz'), StockBarConverter),
            DayBarStore(_p('indexes.bcolz'), IndexBarConverter),
            DayBarStore(_p('futures.bcolz'), FutureDayBarConverter),
            DayBarStore(_p('funds.bcolz'), FundDayBarConverter),
        ]

        self._instruments = InstrumentStore(_p('instruments.pk'))
        self._dividends = DividendStore(_p('original_dividends.bcolz'))
        self._trading_dates = TradingDatesStore(_p('trading_dates.bcolz'))
        self._yield_curve = YieldCurveStore(_p('yield_curve.bcolz'))
        self._split_factor = SimpleFactorStore(_p('split_factor.bcolz'))
        self._ex_cum_factor = SimpleFactorStore(_p('ex_cum_factor.bcolz'))

        self._st_stock_days = DateSet(_p('st_stock_days.bcolz'))
        self._suspend_days = DateSet(_p('suspended_days.bcolz'))

        self.get_yield_curve = self._yield_curve.get_yield_curve
        self.get_risk_free_rate = self._yield_curve.get_risk_free_rate
        if os.path.exists(_p('public_funds.bcolz')):
            self._day_bars.append(DayBarStore(_p('public_funds.bcolz'), PublicFundDayBarConverter))
            self._public_fund_dividends = DividendStore(_p('public_fund_dividends.bcolz'))
            self._non_subscribable_days = DateSet(_p('non_subscribable_days.bcolz'))
            self._non_redeemable_days = DateSet(_p('non_redeemable_days.bcolz'))

    def get_dividend(self, order_book_id, public_fund=False):
        if public_fund:
            return self._public_fund_dividends.get_dividend(order_book_id)
        return self._dividends.get_dividend(order_book_id)

    def get_trading_minutes_for(self, order_book_id, trading_dt):
        raise NotImplementedError

    def get_trading_calendar(self):
        return self._trading_dates.get_trading_calendar()

    def get_all_instruments(self):
        return self._instruments.get_all_instruments()

    def is_suspended(self, order_book_id, dates):
        return self._suspend_days.contains(order_book_id, dates)

    def is_st_stock(self, order_book_id, dates):
        return self._st_stock_days.contains(order_book_id, dates)

    INSTRUMENT_TYPE_MAP = {
        'CS': 0,
        'INDX': 1,
        'Future': 2,
        'ETF': 3,
        'LOF': 3,
        'FenjiA': 3,
        'FenjiB': 3,
        'FenjiMu': 3,
        'PublicFund': 4
    }

    def _index_of(self, instrument):
        return self.INSTRUMENT_TYPE_MAP[instrument.type]

    @lru_cache(None)
    def _all_day_bars_of(self, instrument):
        i = self._index_of(instrument)
        return self._day_bars[i].get_bars(instrument.order_book_id, fields=None)

    @lru_cache(None)
    def _filtered_day_bars(self, instrument):
        bars = self._all_day_bars_of(instrument)
        if bars is None:
            return None
        return bars[bars['volume'] > 0]

    def get_bar(self, instrument, dt, frequency):
        if frequency != '1d':
            raise NotImplementedError

        bars = self._all_day_bars_of(instrument)
        if bars is None:
            return
        dt = np.uint64(convert_date_to_int(dt))
        pos = bars['datetime'].searchsorted(dt)
        if pos >= len(bars) or bars['datetime'][pos] != dt:
            return None

        return bars[pos]

    def get_settle_price(self, instrument, date):
        bar = self.get_bar(instrument, date, '1d')
        if bar is None:
            return np.nan
        return bar['settlement']

    @staticmethod
    def _are_fields_valid(fields, valid_fields):
        if fields is None:
            return True
        if isinstance(fields, six.string_types):
            return fields in valid_fields
        for field in fields:
            if field not in valid_fields:
                return False
        return True

    def get_ex_cum_factor(self, order_book_id):
        return self._ex_cum_factor.get_factors(order_book_id)

    def history_bars(self, instrument, bar_count, frequency, fields, dt,
                     skip_suspended=True, include_now=False,
                     adjust_type='pre', adjust_orig=None):
        if frequency != '1d':
            raise NotImplementedError

        if skip_suspended and instrument.type == 'CS':
            bars = self._filtered_day_bars(instrument)
        else:
            bars = self._all_day_bars_of(instrument)

        if bars is None or not self._are_fields_valid(fields, bars.dtype.names):
            return None

        dt = np.uint64(convert_date_to_int(dt))
        i = bars['datetime'].searchsorted(dt, side='right')
        left = i - bar_count if i >= bar_count else 0
        bars = bars[left:i]
        if adjust_type == 'none' or instrument.type in {'Future', 'INDX'}:
            # 期货及指数无需复权
            return bars if fields is None else bars[fields]

        if isinstance(fields, str) and fields not in FIELDS_REQUIRE_ADJUSTMENT:
            return bars if fields is None else bars[fields]

        return adjust_bars(bars, self.get_ex_cum_factor(instrument.order_book_id),
                           fields, adjust_type, adjust_orig)

    def get_yield_curve(self, start_date, end_date, tenor=None):
        return self._yield_curve.get_yield_curve(start_date, end_date, tenor)

    def get_risk_free_rate(self, start_date, end_date):
        return self._yield_curve.get_risk_free_rate(start_date, end_date)

    def current_snapshot(self, instrument, frequency, dt):
        raise NotImplementedError

    def get_split(self, order_book_id):
        return self._split_factor.get_factors(order_book_id)

    def available_data_range(self, frequency):
        if frequency in ['tick', '1d']:
            s, e = self._day_bars[self.INSTRUMENT_TYPE_MAP['INDX']].get_date_range('000001.XSHG')
            return convert_int_to_date(s).date(), convert_int_to_date(e).date()

        raise NotImplementedError

    def get_margin_info(self, instrument):
        return {
            'margin_type': MARGIN_TYPE.BY_MONEY,
            'long_margin_ratio': instrument.margin_rate,
            'short_margin_ratio': instrument.margin_rate,
        }

    def get_commission_info(self, instrument):
        return CN_FUTURE_INFO[instrument.underlying_symbol]['speculation']

    def get_ticks(self, order_book_id, date):
        raise NotImplementedError

    def public_fund_commission(self, instrument, buy):
        if buy:
            return PUBLIC_FUND_COMMISSION[instrument.fund_type]['Buy']
        else:
            return PUBLIC_FUND_COMMISSION[instrument.fund_type]['Sell']

    def non_subscribable(self, order_book_id, dates):
        return self._non_subscribable_days.contains(order_book_id, dates)

    def non_redeemable(self, order_book_id, dates):
        return self._non_redeemable_days.contains(order_book_id, dates)

    def get_tick_size(self, instrument):
        if instrument.type in ['CS', 'INDX']:
            return 0.01
        elif instrument.type in ['ETF', 'LOF', 'FenjiB', 'FenjiA', 'FenjiMu']:
            return 0.001
        elif instrument.type == 'Future':
            return CN_FUTURE_INFO[instrument.underlying_symbol]['speculation']['tick_size']
        else:
            # NOTE: you can override get_tick_size in your custom data source
            raise RuntimeError(_("Unsupported instrument type for tick size"))
class MongoDataSource(AbstractDataSource):
    def __init__(self, host='127.0.0.1', port=27017, database='emquant'):
        self.client = MongoClient(host, port)
        try:
            # The ismaster command is cheap and does not require auth.
            self.client.admin.command('ismaster')
        except ConnectionFailure as err:
            print('Failed to establish connection to MongoDB: %s' % err)
        self.db = self.client[database]
        self._instruments = self.get_instruments_from_mongo()
        self._trading_dates = self.get_trading_dates_from_mongo(
            TRADING_DATES_REF_CODE)
        self._yield_curve = YieldCurveStore(
            '/root/.rqalpha/bundle/yield_curve.bcolz')

    def get_all_instruments(self):
        return self._instruments

    def get_trading_calendar(self):
        return self._trading_dates

    def available_data_range(self, frequency):
        if frequency in ['1m', '1d']:
            calendar = self.get_trading_calendar()
            return calendar[0].to_pydatetime().date(
            ), calendar[-1].to_pydatetime().date()
        raise NotImplementedError

    def get_bar(self, instrument, dt, frequency):
        """
        :type instrument: rqalpha.model.instrument.instrument
        :type dt: datetime.datetime
        :param str frequency: `1d` or `1m`
        :return: numpy.ndarray
        """
        if frequency == '1d':
            bars = self.get_stock_data_from_mongo(instrument.order_book_id,
                                                  CycType.CYC_DAY)
            if bars is None:
                return
            dt = convert_date_to_int(dt)
            pos = bars['datetime'].searchsorted(dt)
            if pos >= len(bars) or bars['datetime'][pos] != dt:
                return None
            return bars[pos]
        elif frequency == '1m':
            bars = self.get_stock_data_from_mongo(instrument.order_book_id,
                                                  CycType.CYC_MINUTE)
            if bars is None:
                return
            dt = convert_dt_to_int(dt)
            pos = bars['datetime'].searchsorted(dt)
            if pos >= len(bars) or bars['datetime'][pos] != dt:
                return None
            return bars[pos]
        else:
            raise NotImplementedError

    def history_bars(self,
                     instrument,
                     bar_count,
                     frequency,
                     fields,
                     dt,
                     skip_suspended=True,
                     include_now=False):
        """
        :type instrument: rqalpha.model.instrument.instrument
        :type bar_count: int
        :param str frequency: `1d` or `1m`
        :type fields: str or list[str]
        :type dt: datetime.datetime
        :return: numpy.ndarray
        """
        if frequency == '1d':
            bars = self.get_stock_data_from_mongo(instrument.order_book_id,
                                                  CycType.CYC_DAY)

            if bars is None or not self._are_fields_valid(
                    fields, bars.dtype.names):
                return None

            if skip_suspended and instrument.type == 'CS':
                bars = bars[bars['volume'] > 0]

            dt = convert_date_to_int(dt)
            i = bars['datetime'].searchsorted(dt, side='right')
            left = i - bar_count if i >= bar_count else 0
            if fields is None:
                return bars[left:i]
            else:
                return bars[left:i][fields]
        elif frequency == '1m':
            bars = self.get_stock_data_from_mongo(instrument.order_book_id,
                                                  CycType.CYC_MINUTE)

            if bars is None or not self._are_fields_valid(
                    fields, bars.dtype.names):
                return None

            # if skip_suspended and instrument.type == 'CS':
            #     bars = bars[bars['volume'] > 0]

            dt = convert_dt_to_int(dt)
            i = bars['datetime'].searchsorted(dt, side='right')
            left = i - bar_count if i >= bar_count else 0
            if fields is None:
                return bars[left:i]
            else:
                return bars[left:i][fields]
        else:
            raise NotImplementedError

    # TODO: To be implemented
    def current_snapshot(self, instrument, frequency, dt):
        raise NotImplementedError

    def get_yield_curve(self, start_date, end_date, tenor=None):
        return self._yield_curve.get_yield_curve(start_date, end_date, tenor)

    def get_risk_free_rate(self, start_date, end_date):
        return self._yield_curve.get_risk_free_rate(start_date, end_date)

    def get_dividend(self, order_book_id, adjusted=True):
        return None

    def get_split(self, order_book_id):
        return None

    # TODO: To be implemented
    def is_suspended(self, order_book_id, dt_list):
        return [(False) for d in dt_list]

    # TODO: To be implemented
    def is_st_stock(self, order_book_id, dt):
        return False

    @lru_cache(None)
    def get_instruments_from_mongo(self):
        instruments = []
        codes_cursor = self.db[INSTRUMENT_COL].find().sort(
            "windCode", pymongo.ASCENDING)
        for doc in codes_cursor:
            instrument_dict = {
                'industry_name': 'UNKNOWN',
                'symbol': doc['name'],
                'sector_code': 'UNKNOWN',
                'special_type': 'Normal',
                'industry_code': 'UNKNOWN',
                'type': 'CS',
                'listed_date': '2014-06-01',
                'de_listed_date': '0000-00-00',
                'status': 'Active',
                'concept_names': 'null',
                'abbrev_symbol': 'UNKNOWN',
                'round_lot': 100.0,
                'board_type': 'UNKNOWN',
                'exchange': doc['windCode'].split('.')[1],
                'order_book_id': doc['windCode'],
                'sector_code_name': 'UNKNOWN'
            }
            instruments.append(Instrument(instrument_dict))
        return instruments

    @lru_cache(None)
    def get_trading_dates_from_mongo(self, code):
        trading_dates = []
        cursor = self.db[get_col_name(code)].find({
            'cycType': CycType.CYC_DAY
        }, {
            '_id': False,
            'date': True
        }).sort("date", pymongo.ASCENDING)
        for doc in cursor:
            trading_dates.append(doc['date'])
        return pd.Index(pd.Timestamp(d) for d in trading_dates)

    @lru_cache(None)
    def get_stock_data_from_mongo(self, code, cyc_type):
        """
        :param str code: WindCode
        :param cyc_type: Type from CycType
        :return: numpy.ndarray
        """
        logger.info('Load data from MongoDB: Code = {}, CycType = {}'.format(
            code, cyc_type))
        cursor = self.db[get_col_name(code)].find({
            'cycType': cyc_type
        }, {
            '_id': False,
            'date': True,
            'open': True,
            'close': True,
            'high': True,
            'low': True,
            'volume': True,
            'amount': True
        }).sort("date", pymongo.ASCENDING)

        pre_close = np.round(cursor.next()['close'], CONVERTER['close'].round)
        data_num = cursor.count()
        dtype = np.dtype([(f, FIELDS[f]) for f in FIELDS.keys()])
        bars = np.zeros(shape=(data_num, ), dtype=dtype)

        i = 0
        for doc in cursor:
            if cyc_type == CycType.CYC_DAY:
                bars[i]['datetime'] = convert_date_to_int(doc['date'])
                bars[i]['limit_up'] = np.round(
                    np.floor(pre_close * 11000) / 10000,
                    CONVERTER['limit_up'].round)
                bars[i]['limit_down'] = np.round(
                    np.ceil(pre_close * 9000) / 10000,
                    CONVERTER['limit_down'].round)
            elif cyc_type == CycType.CYC_MINUTE:
                bars[i]['datetime'] = convert_dt_to_int(doc['date'])
            else:
                raise NotImplementedError
            bars[i]['open'] = np.round(doc['open'], CONVERTER['open'].round)
            bars[i]['close'] = np.round(doc['close'], CONVERTER['close'].round)
            bars[i]['high'] = np.round(doc['high'], CONVERTER['high'].round)
            bars[i]['low'] = np.round(doc['low'], CONVERTER['low'].round)
            bars[i]['volume'] = doc['volume']
            bars[i]['total_turnover'] = doc['amount']
            pre_close = doc['close']
            i += 1
        logger.info(
            'Load data from MongoDB finished: Code = {}, CycType = {}'.format(
                code, cyc_type))
        return bars

    @staticmethod
    def _are_fields_valid(fields, valid_fields):
        if fields is None:
            return True
        if isinstance(fields, str):
            return fields in valid_fields
        for field in fields:
            if field not in valid_fields:
                return False
        return True

    def get_future_info(self, instrument, hedge_type):
        raise NotImplementedError

    def get_trading_minutes_for(self, order_book_id, trading_dt):
        """
        Get future trading time in one day
        """
        raise NotImplementedError

    def get_settle_price(self, instrument, date):
        """
        Get future settle price in date
        """
        raise NotImplementedError