Esempio n. 1
0
    def _handle_split(self, trading_date):
        import rqdatac
        for order_book_id, position in six.iteritems(self.portfolio.positions):
            split_df = rqdatac.get_split(order_book_id, start_date="2005-01-01", end_date="2099-01-01")
            if split_df is None:
                system_log.warn(_("no split data {}").foramt(order_book_id))
                continue
            try:
                series = split_df.loc[trading_date]
            except KeyError:
                continue

            # 处理拆股

            user_system_log.info(_("split {order_book_id}, {position}").format(
                order_book_id=order_book_id,
                position=position,
            ))

            ratio = series.split_coefficient_to / series.split_coefficient_from
            for key in ["_buy_order_quantity", "_sell_order_quantity", "_buy_trade_quantity", "_sell_trade_quantity"]:
                setattr(position, key, getattr(position, key) * ratio)

            user_system_log.info(_("split {order_book_id}, {position}").format(
                order_book_id=order_book_id,
                position=position,
            ))

            user_system_log.info(_("split {order_book_id}, {series}").format(
                order_book_id=order_book_id,
                series=series,
            ))
Esempio n. 2
0
def gen_splits(d):
    stocks = rqdatac.all_instruments().order_book_id.tolist()
    split = rqdatac.get_split(stocks)
    split['split_factor'] = split['split_coefficient_to'] / split[
        'split_coefficient_from']
    split = split[['split_factor']]
    split.reset_index(inplace=True)
    split.rename(columns={'ex_dividend_date': 'ex_date'}, inplace=True)
    split['ex_date'] = [convert_date_to_int(d) for d in split['ex_date']]
    split.set_index(['order_book_id', 'ex_date'], inplace=True)

    with h5py.File(os.path.join(d, 'split_factor.h5'), 'w') as h5:
        for order_book_id in split.index.levels[0]:
            h5[order_book_id] = split.loc[order_book_id].to_records()
Esempio n. 3
0
def get_split(order_book_ids, start_date=None):
    # type: (Union[str, List[str]], Optional[Union[str, datetime.date]]) -> pd.DataFrame
    """
    获取某只股票到策略当前日期前一天的拆分情况(包含起止日期)。

    :param order_book_ids: 证券代码,证券的独特的标识符,例如:'000001.XSHE'
    :param start_date: 开始日期,用户必须指定,需要早于策略当前日期

    :return: 查询时间段内的某个股票的拆分数据

        *   ex_dividend_date: 除权除息日,该天股票的价格会因为拆分而进行调整
        *   book_closure_date: 股权登记日
        *   split_coefficient_from: 拆分因子(拆分前)
        *   split_coefficient_to: 拆分因子(拆分后)

        例如:每10股转增2股,则split_coefficient_from = 10, split_coefficient_to = 12.

    :example:

    ..  code-block:: python3
        :linenos:

        get_split('000001.XSHE', start_date='2010-01-04')
        #[Out]
        #                 book_closure_date payable_date  split_coefficient_from  \
        #ex_dividend_date
        #2013-06-20              2013-06-19   2013-06-20                      10
        #                  split_coefficient_to
        #ex_dividend_date
        #2013-06-20                        16.0
    """
    # order_book_id 支持list类型
    env = Environment.get_instance()
    dt = env.trading_dt.date() - datetime.timedelta(days=1)
    start_date = to_date(start_date)
    if start_date > dt:
        raise RQInvalidArgument(
            _('in get_split, start_date {} is no earlier than the previous test day {}'
              ).format(start_date, dt))
    if isinstance(order_book_ids, six.string_types):
        order_book_ids = [order_book_ids]
    order_book_ids = [assure_order_book_id(i) for i in order_book_ids]
    return rqdatac.get_split(order_book_ids, start_date, dt)