Esempio n. 1
0
 def test_func_with_incorrect_datatype(self):
     with self.assertRaises(TypeError) as context:
         _ = validate_array_input((1, 2, 3), np.float64, 'arr')
     msg = ["The array {} must be either a list, ".format('arr'),
            "numpy.ndarray or pandas.Series"]
     self.assertTrue("".join(msg) in str(context.exception))     
           
Esempio n. 2
0
 def test_func_with_non_numerical_input(self):
     with self.assertRaises(ValueError) as context:
         _ = validate_array_input(['a', 'b', 1], np.float64, 'arr')
     msg = [
         "The data in the parameter array '{}'".format('arr'),
         " must be purely numerical."
     ]
     self.assertTrue("".join(msg) in str(context.exception))
Esempio n. 3
0
 def test_func_with_list(self):
     vals = [1., 2., 3., 4.]
     arr = validate_array_input(vals, np.float64, 'arr')
     self.assertSequenceEqual(vals, arr.tolist())
Esempio n. 4
0
 def test_func_with_pandas_series(self):
     vals = [1, 2, 3, 4]
     data = pd.Series(data=vals, dtype=np.float64)
     arr = validate_array_input(data, np.float64, 'arr')
     self.assertSequenceEqual(arr.tolist(),
                              np.array(vals, np.float64).tolist())