Esempio n. 1
0
def performClumpingSingleThread(inputImage,
                                clumpsImage,
                                tmpDIR='tmp',
                                width=2000,
                                height=2000,
                                gdalformat='KEA'):
    """
Clump the input image using a tiled processing chain allowing large images to be clumped more quickly.

:param inputImage: the input image to be clumped.
:param clumpsImage: the output clumped image.
:param tmpDIR: the temporary directory where intermediate files will be written (default is 'tmp'). Directory will be created and deleted if does not exist.
:param width: int for width of the image tiles used for processing (Default = 2000).
:param height: int for height of the image tiles used for processing (Default = 2000).
:param gdalformat: string with the GDAL image format for the output image (Default = KEA). NOTE. KEA is used as intermediate format internally and therefore needs to be available.

    """
    createdTmp = False
    if not os.path.exists(tmpDIR):
        os.makedirs(tmpDIR)
        createdTmp = True

    rsgisUtils = rsgislib.RSGISPyUtils()
    uidStr = rsgisUtils.uidGenerator()
    dataType = rsgisUtils.getRSGISLibDataTypeFromImg(inputImage)
    baseName = os.path.splitext(os.path.basename(inputImage))[0] + "_" + uidStr
    imgTilesDIR = os.path.join(tmpDIR, "imgtiles_" + uidStr)
    tilesClumpsDIR = os.path.join(tmpDIR, "imgclumpstiles_" + uidStr)
    tilesImgBase = os.path.join(imgTilesDIR, baseName)
    initMergedClumps = os.path.join(tmpDIR,
                                    "MergedInitClumps_" + uidStr + ".kea")
    if not os.path.exists(imgTilesDIR):
        os.makedirs(imgTilesDIR)
    if not os.path.exists(tilesClumpsDIR):
        os.makedirs(tilesClumpsDIR)

    imageutils.createTiles(inputImage, tilesImgBase, int(width), int(height),
                           0, False, 'KEA', dataType, 'kea')
    imageTiles = glob.glob(tilesImgBase + "*")

    for tile in imageTiles:
        tilBaseName = os.path.splitext(os.path.basename(tile))[0]
        clumpedTile = os.path.join(tilesClumpsDIR, tilBaseName + '_clumps.kea')
        segmentation.clump(tile, clumpedTile, 'KEA', True, 0, True)

    clumpTiles = glob.glob(os.path.join(tilesClumpsDIR, '*_clumps.kea'))
    print("Create Blank Image")
    imageutils.createCopyImage(inputImage, initMergedClumps, 1, 0, 'KEA',
                               rsgislib.TYPE_32UINT)
    print("Merge Tiles into Blank Image")
    segmentation.mergeClumpImages(clumpTiles, initMergedClumps, True)
    print("Merge Tile Boundaries")
    segmentation.mergeEquivClumps(initMergedClumps, clumpsImage, gdalformat,
                                  ['PixelVal'])

    shutil.rmtree(imgTilesDIR)
    shutil.rmtree(tilesClumpsDIR)
    os.remove(initMergedClumps)
    if createdTmp:
        shutil.rmtree(tmpDIR)
Esempio n. 2
0
 def createStage3ImageSubsets(self, inputImage, s2BordersImage, s3BordersClumps, subsetImgsDIR, subsetImgsMaskedDIR, subImgBaseName, minSize):
     segmentation.clump(s2BordersImage, s3BordersClumps, 'KEA', True, 0)
     rastergis.populateStats(s3BordersClumps, True, True)
         
     rastergis.spatialExtent(s3BordersClumps, 'minXX', 'minXY', 'maxXX', 'maxXY', 'minYX', 'minYY', 'maxYX', 'maxYY')
     
     rsgisUtils = rsgislib.RSGISPyUtils()
     dataType = rsgisUtils.getRSGISLibDataTypeFromImg(inputImage)
     
     ratDS = gdal.Open(s3BordersClumps, gdal.GA_Update)
     minX = rat.readColumn(ratDS, "minXX")
     maxX = rat.readColumn(ratDS, "maxXX")
     minY = rat.readColumn(ratDS, "minYY")
     maxY = rat.readColumn(ratDS, "maxYY")
     Histogram = rat.readColumn(ratDS, "Histogram")
     for i in range(minX.shape[0]):
         if i > 0:
             subImage = os.path.join(subsetImgsDIR, subImgBaseName + str(i) + '.kea')
             #print( "[" + str(minX[i]) + ", " + str(maxX[i]) + "][" + str(minY[i]) + ", " + str(maxY[i]) + "]" )
             imageutils.subsetbbox(inputImage, subImage, 'KEA', dataType, minX[i], maxX[i], minY[i], maxY[i])
             if Histogram[i] > minSize:
                 maskedFile = os.path.join(subsetImgsMaskedDIR, subImgBaseName + str(i) + '_masked.kea')
             else:
                 maskedFile = os.path.join(subsetImgsMaskedDIR, subImgBaseName + str(i) + '_burn.kea')
             imageutils.maskImage(subImage, s2BordersImage, maskedFile, 'KEA', dataType, 0, 0)
             rastergis.populateStats(maskedFile, True, False)
     ratDS = None
Esempio n. 3
0
        segmentation.eliminateSinglePixels(inputImage, outputImage_1,
                                           outputImage_2, tempFile, gdalformat,
                                           True, ignoreZeros)
    except:
        print("An error occurred while performing eliminateSinglePixels!")
        print(sys.exc_info()[0])
        sys.exit(1)

    # ------------------------------------------------------------------------------------------------------------------
    # Perform clumping
    # ------------------------------------------------------------------------------------------------------------------

    outputImage_3 = tmpPath + "rsgislib_shep_clump_" + rand_str() + ".tif"

    try:
        segmentation.clump(outputImage_2, outputImage_3, gdalformat, True, 0)
    except:
        print("An error occurred while performing clump!")
        print(sys.exc_info()[0])
        sys.exit(1)

    # ------------------------------------------------------------------------------------------------------------------
    # Eliminate small segments/clumps
    # ------------------------------------------------------------------------------------------------------------------

    outputImage_4 = tmpPath + "rsgislib_shep_clump_clean_" + rand_str(
    ) + ".tif"
    minSize = int(float(sys.argv[4]))
    spectralThresh = float(sys.argv[5])

    try:
Esempio n. 4
0
def clumpImgFunc(imgs):
    """
    Clump an image with values provides as an array for use within a multiprocessing Pool
    """
    segmentation.clump(imgs[0], imgs[1], 'KEA', True, 0, True)