def refine_cand(candsfile, candloc=[], candnum=-1, threshold=0, scaledm=2.1, scalepix=2, scaleuv=1.0, chans=[], returndata=False): """ Helper function to interact with merged cands file and refine analysis candsfile is merged pkl file candloc (scan, segment, candint, dmind, dtind, beamnum) is as above. if no candloc, then it prints out cands above threshold. """ if candnum >= 0: candlocs, candprops, d0 = pc.read_candidates(candsfile, snrmin=threshold, returnstate=True) candloc = candlocs[candnum] candprop = candprops[candnum] logger.info('Refining cand {0} with features {1}'.format( candloc, candprop)) values = rt.pipeline_refine(d0, candloc, scaledm=scaledm, scalepix=scalepix, scaleuv=scaleuv, chans=chans, returndata=returndata) return values elif candloc: logger.info('Refining cand {0}'.format(candloc)) d0 = pickle.load(open(candsfile, 'r')) values = rt.pipeline_refine(d0, candloc, scaledm=scaledm, scalepix=scalepix, scaleuv=scaleuv, chans=chans, returndata=returndata) return d, cands else: return None
def refine_cand(candsfile, candloc=[], threshold=0): """ Helper function to interact with merged cands file and refine analysis candsfile is merged pkl file candloc (scan, segment, candint, dmind, dtind, beamnum) is as above. if no candloc, then it prints out cands above threshold. """ if not candloc: plot_cand(candsfile, candloc=[], candnum=-1, threshold=threshold, savefile=False, returndata=False) else: d = pickle.load(open(candsfile, 'r')) cands = rt.pipeline_refine(d, candloc) return cands