Esempio n. 1
0
def get_item_stats_info_daily():
    #本月当前本市/区每款卷烟订货量
    #本月当前本市/区每款卷烟订单额

    #烟id,烟名称
    plm_item = get_plm_item(spark).select("item_id", "item_name")

    area = get_area(spark)
    #com_id与city的映射关系
    city = area.dropDuplicates(["com_id"]).select("com_id", "city")
    #sale_center_id与区(list)的映射关系
    county = area.groupBy("sale_center_id")\
                        .agg(f.collect_list("county").alias("county"))\
                        .select("sale_center_id","county")
    #标识列的值
    markers = ["1", "3"]
    #按照 市或区统计
    groups = ["com_id", "sale_center_id"]
    joins = [city, county]
    # 除需要计算的值,其他的数据
    cols_comm = [["city", "gauge_id", "gauge_name", "ciga_data_marker"],
                 [
                     "county", "sale_center_id", "gauge_id", "gauge_name",
                     "ciga_data_marker"
                 ]]
    #需要计算的值的列名
    cols = [["gauge_city_orders", "gauge_city_order_amount"],
            ["gauge_county_orders", "gauge_county_order_amount"]]

    co_co_line = get_co_co_line(spark, scope=[0, 0], filter="month")\
                                 .select("item_id","qty_ord","amt","com_id","sale_center_id")
    co_co_line.cache()
    for i in range(len(groups)):
        group = groups[i]
        join = joins[i]
        c = cols[i]
        marker = markers[i]
        try:

            #2.本月每款烟在每个区的订单量,订单额
            print(f"{str(dt.now())}  本月{group}各品规的订单量,订单额")
            #com_id item_id qty_ord amt
            qty_amt=co_co_line.groupBy([group,"item_id"])\
                          .agg(f.sum(col("qty_ord")).alias(c[0]),f.sum(col("amt")).alias(c[1]))

            columns = cols_comm[i] + c
            qty_amt.withColumn("row",f.concat_ws("_",col(group),col("item_id")))\
                    .join(plm_item,"item_id")\
                    .join(join,group)\
                    .withColumnRenamed("item_id","gauge_id")\
                    .withColumnRenamed("item_name","gauge_name")\
                    .withColumn("ciga_data_marker",f.lit(marker))\
                    .foreachPartition(lambda x:write_hbase1(x,columns,hbase))
        except Exception:
            tb.print_exc()
    co_co_line.unpersist()
Esempio n. 2
0
def get_item_rating():
    #规格卷烟区域偏好分布
    hbase = {"table": als_table + "_TEMP", "families": ["0"], "row": "row"}
    try:
        #卷烟id 卷烟名称
        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # com_id与city的映射关系
        city = area.dropDuplicates(["com_id"]).select("com_id", "city")
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
                .agg(f.collect_list("county").alias("county")) \
                .select("sale_center_id", "county")

        #com_id,sale_center_id,city,county,cust_id,cust_name,longitude,latitude
        co_cust = get_co_cust(spark).select("cust_id", "cust_name", "com_id", "sale_center_id") \
                                    .join(get_cust_lng_lat(spark), "cust_id") \
                                    .withColumnRenamed("lng", "longitude") \
                                    .withColumnRenamed("lat", "latitude")\
                                    .join(county,"sale_center_id")\
                                    .join(city,"com_id")

        print(f"{str(dt.now())} 每个零售户对每品规烟的评分")
        columns = [
            "city", "sale_center_id", "county", "cust_id", "cust_name",
            "longitude", "latitude", "gauge_id", "gauge_name",
            "grade_data_marker", "gauge_grade"
        ]

        get_cigar_rating(spark).join(co_cust,"cust_id")\
                                  .join(plm_item,"item_id")\
                                  .withColumn("row",f.concat_ws("_",col("item_id"),col("cust_id")))\
                                  .withColumn("grade_data_marker",f.lit("1"))\
                                  .withColumnRenamed("item_id","gauge_id")\
                                  .withColumnRenamed("item_name","gauge_name")\
                                  .withColumnRenamed("rating","gauge_grade")\
                                  .foreachPartition(lambda x:write_hbase1(x,columns,hbase))

    except Exception:
        tb.print_exc()
Esempio n. 3
0
def get_brand_stats_info_monthly():
    # 市/区每款卷烟上一月销量/环比/同比
    # 市/区每款卷烟上一月订单数/环比/同比
    # 市/区每款卷烟上一月销量占比/环比/同比

    try:
        # 烟品牌id,烟品牌名称
        brand = get_phoenix_table(spark, brand_table)
        # 烟id,烟名称
        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # com_id与city的映射关系
        city = area.dropDuplicates(["com_id"]).select("com_id", "city")
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
            .agg(f.collect_list("county").alias("county")) \
            .select("sale_center_id", "county")

        # 标识列的值
        markers = ["0", "2"]
        # 按照 市或区统计
        groups = ["com_id", "sale_center_id"]
        joins = [city, county]
        # 除需要计算的值,其他的数据
        cols_comm = [["city", "brand_id", "brand_name", "ciga_data_marker"],
                     [
                         "county", "sale_center_id", "brand_id", "brand_name",
                         "ciga_data_marker"
                     ]]
        #需要计算的值的列名
        cols = [[
            "brand_city_month_sales", "brand_city_month_orders",
            "brand_city_month_sales_ratio", "brand_city_month2_sales",
            "brand_city_month2_orders", "brand_city_month2_sales_ratio",
            "brand_city_month_sales_last_year",
            "brand_city_month_orders_last_year",
            "brand_city_month_retio_last_year"
        ],
                [
                    "brand_county_month_sales", "brand_county_month_orders",
                    "brand_county_month_sales_ratio",
                    "brand_county_month2_sales", "brand_county_month2_orders",
                    "brand_county_month2_sales_ratio",
                    "brand_county_month_sales_last_year",
                    "brand_county_month_orders_last_year",
                    "brand_county_month_retio_last_year"
                ]]


        co_co_line=get_co_co_line(spark, scope=[1, 13], filter="month") \
            .where(col("month_diff").isin([1,2,13]))\
            .join(plm_item, "item_id") \
            .withColumn("brand_name", item_name_udf(col("item_name"))) \
            .select("brand_name", "com_id", "sale_center_id", "qty_ord","month_diff")

        co_co_line.cache()

        for i in range(len(groups)):
            group = groups[i]
            join = joins[i]
            c = cols[i]
            marker = markers[i]
            try:
                # 获取上一个月订单行表数据
                last_month = co_co_line.where(col("month_diff") == 1)

                # 1、2.市/区每款烟的订单量,订单数
                print(f"{str(dt.now())}  上一个月{group}每个品牌的订单量,订单数")
                qty_amt = last_month.groupBy(group, "brand_name").agg(
                    f.sum(col("qty_ord")).alias(c[0]),
                    f.count(col(group)).alias(c[1]))

                # 3.市/区每款卷烟销量占比
                print(f"{str(dt.now())}  上一个月{group}每个品牌的销量占比")
                qty_ratio = last_month.groupBy(group) \
                    .agg(f.sum(col("qty_ord")).alias("qty_ord_total")) \
                    .join(qty_amt, group) \
                    .withColumn(c[2], col(c[0]) / col("qty_ord_total"))\
                    .select(group,"brand_name",c[2])

                # --------------------环比

                # 获取上第二个月订单行表数据
                last_two_month = co_co_line.where(col("month_diff") == 2)

                # 市/区每款卷烟订单量,订单数 上次同期
                print(f"{str(dt.now())}  上第二个月{group}每个品牌的订单量,订单数")
                qty_amt_last = last_two_month.groupBy(group, "brand_name").agg(
                    f.sum(col("qty_ord")).alias(c[3]),
                    f.count(col(group)).alias(c[4]))
                # 市/区每款卷烟销量占比 上次同期
                print(f"{str(dt.now())}  上第二个月{group}每个品牌的销量占比")
                qty_ratio_last = last_two_month.groupBy(group) \
                    .agg(f.sum(col("qty_ord")).alias("qty_ord_total_last")) \
                    .join(qty_amt_last, group) \
                    .withColumn(c[5], col(c[3]) / col("qty_ord_total_last"))\
                    .select(group,"brand_name",c[5])

                # # 4、5.市/区每款卷烟订单量,订单数环比
                # print(f"{str(dt.now())}  上一个月{group}每个品牌的订单量,订单数的环比")
                # qty_amt_last.join(qty_amt, [group, "brand"]) \
                #     .withColumn("qty_ring_rate", period_udf(col("qty_ord"), col("qty_ord_last"))) \
                #     .withColumn("amt_ring_rate", period_udf(col("amount"), col("amount_last")))
                #
                # # 6.市/区每款卷烟订单量占比环比
                # print(f"{str(dt.now())}  上一个月{group}每个品牌的销量占比的环比")
                # qty_ratio_last.join(qty_ratio, [group, "brand"]) \
                #     .withColumn("qty_ratio_ring", period_udf(col("qty_ratio"), col("qty_ratio_last")))

                # ---------------------同比
                # 获取去年同期 上一月订单行表数据
                last_year = co_co_line.where(col("month_diff") == 13)

                # 市/区每款烟的订单量,订单数 去年同期
                print(f"{str(dt.now())}  去年同期{group}每个品牌的订单量,订单数")
                qty_amt_ly = last_year.groupBy(group, "brand_name") \
                    .agg(f.sum(col("qty_ord")).alias(c[6]), f.count(col(group)).alias(c[7]))

                # 市/区每款烟销量的占比 去年同期
                print(f"{str(dt.now())}  去年同期{group}每个品牌的销量占比")
                qty_ratio_ly = last_year.groupBy(group) \
                    .agg(f.sum(col("qty_ord")).alias("qty_ord_total_ly")) \
                    .join(qty_amt_ly, group) \
                    .withColumn(c[8], col(c[6]) / col("qty_ord_total_ly"))\
                    .select(group,"brand_name",c[8])

                # # 7、8. 市/区每款卷烟订单量,订单数 同比
                # print(f"{str(dt.now())}  上一个月{group}每个品牌的订单量,订单数的同比")
                # qty_amt_ly.join(qty_amt, [group, "brand"]) \
                #     .withColumn("qty_ord_yoy", period_udf(col("qty_ord"), col("qty_ord_ly"))) \
                #     .withColumn("amt_yoy", period_udf(col("amount"), col("amount_ly")))
                # # 9.市/区每款烟销量占比的同比
                # print(f"{str(dt.now())}  上一个月{group}每个品牌的销量占比的同比")
                # qty_ratio_ly.join(qty_ratio, [group, "brand"]) \
                #     .withColumn("qty_ratio_yoy", period_udf(col("qty_ratio"), col("qty_ratio_ly")))

                all_df = qty_ratio.join(qty_amt, [group, "brand_name"], "outer") \
                                .join(qty_amt_last, [group, "brand_name"], "outer") \
                                .join(qty_ratio_last, [group, "brand_name"], "outer") \
                                .join(qty_amt_ly, [group, "brand_name"], "outer") \
                                .join(qty_ratio_ly, [group, "brand_name"], "outer")\
                                .na.fill(0,c)
                columns = cols_comm[i] + c
                all_df.join(brand, "brand_name") \
                    .withColumn("row", f.concat_ws("_", col(group), col("brand_id"))) \
                    .join(join, group) \
                    .withColumn("ciga_data_marker", f.lit(marker)) \
                    .foreachPartition(lambda x: write_hbase1(x, columns, hbase))
            except Exception:
                tb.print_exc()
        co_co_line.unpersist()
    except Exception:
        tb.print_exc()
Esempio n. 4
0
def get_cover_rate():
    #上个月店铺覆盖率

    try:
        # 烟id,烟名称
        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # com_id与city的映射关系
        city = area.dropDuplicates(["com_id"]).select("com_id", "city")
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
            .agg(f.collect_list("county").alias("county")) \
            .select("sale_center_id", "county")

        # 标识列的值
        markers = ["1", "3"]
        # 按照 市或区统计
        groups = ["com_id", "sale_center_id"]
        joins = [city, county]
        # 除需要计算的值,其他的数据
        cols_comm = [["city", "gauge_id", "gauge_name", "ciga_data_marker"],
                     [
                         "county", "sale_center_id", "gauge_id", "gauge_name",
                         "ciga_data_marker"
                     ]]
        # 需要计算的值的列名
        cols = ["gauge_city_retail_ratio", "gauge_county_retail_ratio"]

        co_co_line = get_co_co_line(spark, scope=[1, 1], filter="month") \
            .select("item_id", "cust_id", "com_id","sale_center_id")
        co_co_line.cache()

        for i in range(len(groups)):
            group = groups[i]
            join = joins[i]
            c = cols[i]
            marker = markers[i]
            columns = cols_comm[i]
            try:
                co_cust = get_co_cust(spark).select("cust_id", group)

                print(f"{str(dt.now())}  卷烟店铺覆盖率  {group}级别")

                # 1.每个区域零售户数量
                cust_num = co_cust.groupBy(group).agg(
                    f.count("cust_id").alias("cust_num"))
                # 2.每个区域每款卷烟覆盖店面数量
                item_cover_num = co_co_line.dropDuplicates(["cust_id", "item_id"]) \
                    .groupBy(group, "item_id") \
                    .agg(f.count("cust_id").alias("item_cover_num"))

                #3.店铺覆盖率
                cover_ratio=item_cover_num.join(cust_num, group) \
                    .withColumn(c, col("item_cover_num") / col("cust_num"))

                columns.append(c)
                cover_ratio.withColumn("row", f.concat_ws("_", col(group), col("item_id"))) \
                    .join(plm_item, "item_id") \
                    .join(join, group) \
                    .withColumn("ciga_data_marker", f.lit(marker)) \
                    .withColumnRenamed("item_id", "gauge_id") \
                    .withColumnRenamed("item_name", "gauge_name") \
                    .foreachPartition(lambda x: write_hbase1(x, columns, hbase))
            except Exception:
                tb.print_exc()
        co_co_line.unpersist()
    except Exception:
        tb.print_exc()
Esempio n. 5
0
def get_item_sales_forecast():
    #周销量未来预测

    try:
        print(f"{str(dt.now())} 周销量未来预测")
        spark.conf.set("spark.sql.execution.arrow.enabled", "true")
        co_co_line=get_co_co_line(spark,scope=[1,365]).select("co_num","line_num","cust_id","item_id","sale_center_id",
                                                   "qty_need","qty_ord","qty_rsn","price","amt","born_date")\
                                                  .withColumn("born_date",col("born_date").cast("string"))

        pd_df = co_co_line.toPandas()
        #获取周销量未来两周预测结果
        """
        item_id,sale_center_id,2019-06-03 00:00:00,2019-06-10 00:00:00
        1130309,01111430204,8,10
        1130309,01111430205,45,51
        """
        sub_df = predict(pd_df, 2)

        #转成spark的DataFrame
        result = spark.createDataFrame(sub_df)
        #将日期作为列值    item_id,sale_center_id,week1,value1,week2,value2
        columns = result.columns[2:4]
        for i in range(len(columns)):
            column = columns[i]
            result=result.withColumnRenamed(column,f"value{i+1}")\
                          .withColumn(f"week{i+1}",f.lit(column))

        json_udf = f.udf(lambda x1, y1, x2, y2: json.dumps([{
            "date": x1,
            "value": y1
        }, {
            "date": x2,
            "value": y2
        }]))
        colName = "gauge_sales_forecast"
        result = result.withColumn(
            colName,
            json_udf(col("week1"), col("value1"), col("week2"), col("value2")))

        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
            .agg(f.collect_list("county").alias("county")) \
            .select("sale_center_id", "county")

        columns = [
            "sale_center_id", "county", "gauge_id", "gauge_name",
            "ciga_data_marker", colName
        ]
        result.join(plm_item,"item_id")\
              .join(county,"sale_center_id")\
              .withColumn("row",f.concat_ws("_",col("sale_center_id"),col("item_id")))\
              .withColumn("ciga_data_marker",f.lit("3"))\
              .withColumnRenamed("item_id","gauge_id")\
              .withColumnRenamed("item_name","gauge_name")\
              .foreachPartition(lambda x:write_hbase1(x,columns,hbase))

    except Exception:
        tb.print_exc()
Esempio n. 6
0
def get_item_historical_sales():
    #市/区每款卷烟上四周各周的销量
    try:

        # 烟id,烟名称
        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # com_id与city的映射关系
        city = area.dropDuplicates(["com_id"]).select("com_id", "city")
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
            .agg(f.collect_list("county").alias("county")) \
            .select("sale_center_id", "county")

        # 标识列的值
        markers = ["1", "3"]
        # 按照 市或区统计
        groups = ["com_id", "sale_center_id"]
        joins = [city, county]
        # 除需要计算的值,其他的数据
        cols_comm = [["city", "gauge_id", "gauge_name", "ciga_data_marker"],
                     [
                         "county", "sale_center_id", "gauge_id", "gauge_name",
                         "ciga_data_marker"
                     ]]
        # 需要计算的值的列名
        cols = ["gauge_city_sales_history", "gauge_county_sales_history"]

        # 获取上四周订单行表数据
        # date为订单所在周的星期五的日期 给前端展示
        co_co_line = get_co_co_line(spark, scope=[1, 4], filter="week") \
            .select("item_id", "com_id","sale_center_id", "qty_ord", "born_date") \
            .withColumn("date", f.date_add(f.date_trunc("week", col("born_date")), 4))
        co_co_line.cache()
        for i in range(len(groups)):
            group = groups[i]
            join = joins[i]
            c = cols[i]
            marker = markers[i]
            columns = cols_comm[i]
            print(f"{str(dt.now())} {group} 每款卷烟上四周各周的销量")
            try:
                json_udf = f.udf(lambda x, y: json.dumps({
                    "date": str(x),
                    "value": y
                }))
                #计算每个市/区 每款烟前四周各周的销量
                #将结果拼成 [{"date":"2019-06-21","value":12354},{"date":"2019-06-14","value":14331}....]
                result=co_co_line.groupBy(group,"item_id","date")\
                          .agg(f.sum(col("qty_ord")).alias("qty_ord"))\
                          .withColumn("json",json_udf(col("date"),col("qty_ord")))\
                          .groupBy(group,"item_id")\
                          .agg(f.collect_list(col("json")).alias(c))

                columns.append(c)
                result.withColumn("row", f.concat_ws("_", col(group), col("item_id"))) \
                    .join(plm_item, "item_id") \
                    .join(join, group) \
                    .withColumnRenamed("item_id", "gauge_id") \
                    .withColumnRenamed("item_name", "gauge_name") \
                    .withColumn("ciga_data_marker", f.lit(marker)) \
                    .foreachPartition(lambda x: write_hbase1(x, columns, hbase))
            except Exception:
                tb.print_exc()
        co_co_line.unpersist()
    except Exception:
        tb.print_exc()
Esempio n. 7
0
def get_item_stats_info_weekly():
    # 市/区每款卷烟上一周销量/环比/同比
    try:
        # 烟id,烟名称
        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # com_id与city的映射关系
        city = area.dropDuplicates(["com_id"]).select("com_id", "city")
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
            .agg(f.collect_list("county").alias("county")) \
            .select("sale_center_id", "county")

        # 标识列的值
        markers = ["1", "3"]
        # 按照 市或区统计
        groups = ["com_id", "sale_center_id"]
        joins = [city, county]
        # 除需要计算的值,其他的数据
        cols_comm = [["city", "gauge_id", "gauge_name", "ciga_data_marker"],
                     [
                         "county", "sale_center_id", "gauge_id", "gauge_name",
                         "ciga_data_marker"
                     ]]
        # 需要计算的值的列名
        cols = [[
            "gauge_city_week_sales", "gauge_city_week_sales_last_year",
            "gauge_city_week2_sales"
        ],
                [
                    "gauge_county_week_sales",
                    "gauge_county_week_sales_last_year",
                    "gauge_county_week2_sales"
                ]]

        co_co_line = get_co_co_line(spark, scope=[1, 2], filter="week") \
            .select("item_id", "com_id", "sale_center_id", "qty_ord", "week_diff")

        co_co_line.cache()

        last_year = spark.sql("select  * from DB2_DB2INST1_CO_CO_LINE") \
            .where(col("com_id").isin(cities)) \
            .withColumn("born_date", f.to_date("born_date", "yyyyMMdd")) \
            .withColumn("last_year_today", f.date_sub(f.current_date(), 365)) \
            .withColumn("week_diff", week_diff("last_year_today", "born_date")) \
            .where(col("week_diff") == 1) \
            .withColumn("qty_ord", col("qty_ord").cast("float")) \
            .select("com_id","sale_center_id", "item_id", "qty_ord")
        last_year.cache()
        for i in range(len(groups)):
            group = groups[i]
            join = joins[i]
            c = cols[i]
            marker = markers[i]
            try:
                # 获取上一周订单行表数据
                last_week = co_co_line.where(col("week_diff") == 1)

                # 1.市/区每款烟的订单量
                print(f"{str(dt.now())}  上一周{group}每款烟的订单量")
                qty_amt = last_week.groupBy(group, "item_id").agg(
                    f.sum(col("qty_ord")).alias(c[0]))

                # -------------------环比
                # 获取上第二周订单行表数据
                last_two_week = co_co_line.where(col("week_diff") == 2)

                # 2.市/区每款卷烟销量 上次同期
                print(f"{str(dt.now())}  上第二周{group}每款烟的订单量")
                qty_amt_last = last_two_week.groupBy(group, "item_id").agg(
                    f.sum(col("qty_ord")).alias(c[1]))

                # # 2.市/区每款卷烟销量 环比
                # print(f"{str(dt.now())}  上一周{group}每款烟销量环比")
                # qty_amt_last.join(qty_amt, [group, "item_id"]) \
                #     .withColumn("qty_ring_rate", period_udf(col("qty_ord"), col("qty_ord_last")))

                # --------------------同比

                # 3.市/区每款烟的订单量 去年
                print(f"{str(dt.now())}  去年同期{group}每款烟的订单量")
                qty_ord_ly = last_year.groupBy(group, "item_id") \
                    .agg(f.sum(col("qty_ord")).alias(c[2]))

                # #3 市/区每款卷烟销量同比
                # print(f"{str(dt.now())}  上一周{group}每款烟销量同比")
                # qty_ord_ly.join(qty_amt, [group, "item_id"]) \
                #     .withColumn("qty_ord_yoy", period_udf(col("qty_ord"), col("qty_ord_ly")))

                all_df = qty_amt.join(qty_amt_last, [group, "item_id"], "outer") \
                    .join(qty_ord_ly, [group, "item_id"], "outer")\
                    .na.fill(0,c)

                columns = cols_comm[i] + c
                all_df.withColumn("row", f.concat_ws("_", col(group), col("item_id"))) \
                    .join(plm_item, "item_id") \
                    .join(join, group) \
                    .withColumnRenamed("item_id", "gauge_id") \
                    .withColumnRenamed("item_name", "gauge_name") \
                    .withColumn("ciga_data_marker", f.lit(marker)) \
                    .foreachPartition(lambda x: write_hbase1(x, columns, hbase))
            except Exception:
                tb.print_exc()
        co_co_line.unpersist()
        last_year.unpersist()
    except Exception:
        tb.print_exc()
Esempio n. 8
0
def get_item_ratio():
    # 市/区 同品牌各规格销量占比
    try:
        # 烟品牌id,烟品牌名称
        brand = get_phoenix_table(spark, brand_table)
        # 烟id,烟名称
        plm_item = get_plm_item(spark).select("item_id", "item_name")

        area = get_area(spark)
        # com_id与city的映射关系
        city = area.dropDuplicates(["com_id"]).select("com_id", "city")
        # sale_center_id与区(list)的映射关系
        county = area.groupBy("sale_center_id") \
            .agg(f.collect_list("county").alias("county")) \
            .select("sale_center_id", "county")

        #标识列的值
        markers = ["1", "3"]
        # 按照 市或区统计
        groups = ["com_id", "sale_center_id"]
        joins = [city, county]
        # 除需要计算的值,其他的数据
        cols_comm = [[
            "city", "brand_id", "brand_name", "gauge_id", "gauge_name",
            "ciga_data_marker"
        ],
                     [
                         "county", "sale_center_id", "brand_id", "brand_name",
                         "gauge_id", "gauge_name", "ciga_data_marker"
                     ]]
        # 需要计算的值的列名
        cols = [
            "brand_city_gauge_sales_ratio", "brand_county_gauge_sales_ratio"
        ]

        # 1.上个月同品牌各规格销量占比
        co_co_line = get_co_co_line(spark, scope=[1, 1], filter="month") \
                    .join(plm_item, "item_id") \
                    .withColumn("brand_name", item_name_udf(col("item_name"))) \
                    .select("item_id", "brand_name", "qty_ord", "com_id","sale_center_id")
        co_co_line.cache()
        for i in range(len(groups)):
            group = groups[i]
            join = joins[i]
            c = cols[i]
            marker = markers[i]
            columns = cols_comm[i]
            try:

                #2.各市/区 各品牌销量
                brand_ord = co_co_line.groupBy(group, "brand_name").agg(
                    f.sum(col("qty_ord")).alias("brand_ord"))
                #3.各市/区 每个品牌各品规销量
                item_ord = co_co_line.groupBy(
                    group, "brand_name",
                    "item_id").agg(f.sum(col("qty_ord")).alias("item_ord"))
                #4.销量占比
                print(f"{str(dt.now())}  上一个月{group}同品牌各品规的销量占比")
                brand_item=brand_ord.join(item_ord, [group,"brand_name"]) \
                    .withColumn(c, col("item_ord") / col("brand_ord"))

                columns.append(c)
                brand_item.withColumn("row",f.concat_ws("_",col(group),col("item_id"))) \
                          .join(plm_item,"item_id")\
                          .join(brand, "brand_name")\
                          .join(join,group)\
                          .withColumn("ciga_data_marker",f.lit(marker))\
                          .withColumnRenamed("item_id","gauge_id")\
                          .withColumnRenamed("item_name","gauge_name")\
                          .foreachPartition(lambda x:write_hbase1(x,columns,hbase))
            except Exception:
                tb.print_exc()

        co_co_line.unpersist()
    except Exception:
        tb.print_exc()