def run_reg(self): print "run_reg" run.setEnvVar( "assimp_path", self.assimp_bin_path ) run.run_test() rc.run() self.b_update_.config( state=ACTIVE ) return 0
def run_reg(self): print "run_reg" run.setEnvVar("assimp_path", self.assimp_bin_path) run.run_test() rc.run() self.b_update_.config(state=ACTIVE) return 0
def run_sr(): blocks = [ ( range(20, 100, 10), range(0, MAX_ERRORS + 1), ), ( range(20, 400, 20), range(0, MAX_ERRORS + 1), ), ( range(20, 800, 30), range(0, MAX_ERRORS + 1), ), ( range(20, 1010, 40), range(0, MAX_ERRORS + 1), ), ( range(20, 1010, 10), range(0, MAX_ERRORS + 1), ), ] for dell, errl in blocks: run.run_test( test_url= 'http://www.quantified-mind.com/tests/simple_reaction_time/practice', js_script_template=js_scripts.SIMPLE_REACTION_SCRIPT, delays=list(dell), errors=list(errl), state_file='simple-reaction.json', )
def run_vm(): blocks = [ ( # ok, so my delay was 742 on average... so let's do from 20 to 1000 in steps of 20? range(20, 1200, 20), range(0, MAX_ERRORS + 1), ), ( range(30, 1200, 20), range(0, MAX_ERRORS + 1), ), ] for dell, errl in blocks: run.run_test( test_url= "http://www.quantified-mind.com/tests/feature_match/practice", js_script_template=js_scripts.VISUAL_MATCHING_SCRIPT, delays=list(dell), errors=list(errl), state_file='visual-matching.json', )
def calculate_fitness(self): tree = self.genome tree_string = get_node_string(tree) #print("Tree was turned into: ", tree_string) #input("GO ON?!") with open("behavior_tree_bot/tree.txt", "w") as file: file.write(tree_string) results = run.run_test() #print("Results: ", results) #self._fitness = 10 + results['wins'] - 2 * results['crashes'] - results['timed_out'] self._fitness = 10 + 0.5 * results['easy_bot'] + 2 * results[ 'spread_bot'] + 2 * results['aggressive_bot'] + 0.8 * results[ 'production_bot'] - 2 * results['crashes'] - results[ 'timed_out'] + 0.5 * results["unique_wins"] self._results = results #measurements = metrics.metrics(self.to_level()) # Print out the possible measurements or look at the implementation of metrics.py for other keys: # print(measurements.keys()) # Default fitness function: Just some arbitrary combination of a few criteria. Is it good? Who knows? # STUDENT Modify this, and possibly add more metrics. You can replace this with whatever code you like. ##################################################################### ## TODO ## We need to think of a way to calculate fitness. The naive solution is to ## literally just run the game and check our win rate. Unfortunately this would ## take a lot of time. Keep an eye out for patterns that might give us a better ## way to analyze trees success without actually running it. In the meantime, ## this should probably just create the behavior tree from our genome and ## run the planet wars program. ## ## -Damen ##################################################################### """ coefficients = dict( meaningfulJumpVariance=0.5, negativeSpace=0.6, pathPercentage=0.5, emptyPercentage=0.6, linearity=-0.5, solvability=2.0 ) self._fitness = sum(map(lambda m: coefficients[m] * measurements[m], coefficients)) """ return self
# 10개 이상의 카테고리를 10개로 묶는다. shrink_cat_vars_dict = shrink_cat_vars(train, cat_vars, shrink_size=10) shrink_cat_train = shrink_cat(train_cat, shrink_cat_vars_dict) shrink_cat_test = shrink_cat(test_cat, shrink_cat_vars_dict) cat_features = [ feature for feature in shrink_cat_train.columns if 'new' in feature ] print("engineered features: ", cat_features) # 2-4. merge train = pd.concat([train[features], shrink_cat_train[cat_features]], axis=1).astype(float) test = pd.concat([test[features], shrink_cat_test[cat_features]], axis=1).astype(float) print(train.shape, test.shape) # 3. train and prediction fold = 10 seed = 2018 models = run_train(train, train_label, params, fold=fold, seed=seed) # 4. test prediction = run_test(test, models, fold) # 5. save test_submission = pd.DataFrame({'id': test_id, 'target': prediction}) test_submission.to_csv('../porto-seguro/final.csv', index=False) print("saved result")
def run_reg(self): log(INFO, "Starting regression test suite.") run.run_test() rc.run() self.b_update_.config( state=ACTIVE ) return 0
time.sleep(5*60) if __name__ == "__main__": if len(sys.argv) > 1: infrastructure = sys.argv[1] config_path = sys.argv[2] scenario_path = sys.argv[3] num = sys.argv[4] results = [] for i in xrange(int(num)): header = '###################\n' \ '# Running test %s #\n' \ '###################' print header % (i+1) results_path = run_test(sys.argv) print "Results for this test are in %s\n" % results_path results.append(results_path) if infrastructure == 'aws': reboot_aws_frontends(config_path) summary = '#######################' \ '# SUMMARY OF TESTS #' \ '#######################' for i, r in enumerate(results): print "Results for test %s are in: %s" % (i, r)
time.sleep(5 * 60) if __name__ == "__main__": if len(sys.argv) > 1: infrastructure = sys.argv[1] config_path = sys.argv[2] scenario_path = sys.argv[3] num = sys.argv[4] results = [] for i in xrange(int(num)): header = '###################\n' \ '# Running test %s #\n' \ '###################' print header % (i + 1) results_path = run_test(sys.argv) print "Results for this test are in %s\n" % results_path results.append(results_path) if infrastructure == 'aws': reboot_aws_frontends(config_path) summary = '#######################' \ '# SUMMARY OF TESTS #' \ '#######################' for i, r in enumerate(results): print "Results for test %s are in: %s" % (i, r)
def train_network(self, resume=False): csv_logger = CsvLogger(filepath=self.opt.save_model) if (not resume): best_test = 0 start_epoch = self.opt.start_epoch else: checkpoint_path = os.path.join( self.opt.resume, 'checkpoint{}.pth.tar'.format(self.opt.local_rank)) csv_path = os.path.join( self.opt.resume, 'results{}.csv'.format(self.opt.local_rank)) print("=> loading checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location=self.opt.device) start_epoch = checkpoint['epoch'] start_step = len(self.train_loader) * start_epoch self.optim, self.mixup = self.init_optimizer_and_mixup( checkpoint['optimizer']) best_test = checkpoint['best_prec1'] self.model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format( checkpoint_path, checkpoint['epoch'])) for epoch in range(start_epoch, self.opt.epochs + 1): print("-------------------------", epoch, "--------------------------------") train_loss, train_accuracy1, train_accuracy5, = run_train( self.model, self.train_loader, self.mixup, epoch, self.optim, self.criterion, self.device, self.opt._dtype, self.opt.train_batch_size, log_interval=2) test_loss, test_accuracy1, test_accuracy5 = run_test( self.model, self.val_loader, self.criterion, self.device, self.opt._dtype) self.optim.epoch_step() self.vis.plot_curves({'train_loss': train_loss}, iters=epoch, title='train loss', xlabel='epoch', ylabel='train loss') self.vis.plot_curves({'train_acc': train_accuracy1}, iters=epoch, title='train acc', xlabel='epoch', ylabel='train acc') self.vis.plot_curves({'val_loss': test_loss}, iters=epoch, title='val loss', xlabel='epoch', ylabel='val loss') self.vis.plot_curves({'val_acc': test_accuracy1}, iters=epoch, title='val acc', xlabel='epoch', ylabel='val acc') csv_logger.write({ 'epoch': epoch + 1, 'val_error1': 1 - test_accuracy1, 'val_error5': 1 - test_accuracy5, 'val_loss': test_loss, 'train_error1': 1 - train_accuracy1, 'train_error5': 1 - train_accuracy5, 'train_loss': train_loss }) save_checkpoint( { 'epoch': epoch + 1, 'state_dict': self.model.state_dict(), 'best_prec1': best_test, 'optimizer': self.optim.state_dict() }, test_accuracy1 > best_test, filepath=self.opt.save_model, local_rank=self.opt.local_rank) # TODO: save on the end of the cycle mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) print("memory gpu use : ", mem) if test_accuracy1 > best_test: best_test = test_accuracy1