Esempio n. 1
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {
        "dstc2_clean": Dstc2Processor,
        "woz2": Woz2Processor,
        "sim-m": SimMProcessor,
        "sim-r": SimRProcessor,
    }

    tokenization.validate_case_matches_checkpoint(
        do_lower_case=True, init_checkpoint=FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
        raise ValueError(
            "At least one of `do_train`, `do_eval` or `do_predict' must be True."
        )

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    if FLAGS.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, bert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    slot_list = processor.slot_list
    class_types = processor.class_types
    num_class_labels = len(class_types)
    if task_name in ['woz2', 'dstc2_clean']:
        num_class_labels -= 1

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        keep_checkpoint_max=None,
        tpu_config=tf.contrib.tpu.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None
    if FLAGS.do_train:
        train_examples = processor.get_train_examples(FLAGS.data_dir)
        num_train_steps = int(
            len(train_examples) / FLAGS.train_batch_size *
            FLAGS.num_train_epochs)
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    model_fn = model_fn_builder(bert_config=bert_config,
                                slot_list=slot_list,
                                num_class_labels=num_class_labels,
                                init_checkpoint=FLAGS.init_checkpoint,
                                learning_rate=FLAGS.learning_rate,
                                num_train_steps=num_train_steps,
                                num_warmup_steps=num_warmup_steps,
                                use_tpu=FLAGS.use_tpu,
                                use_one_hot_embeddings=FLAGS.use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)

    if FLAGS.do_train:
        train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
        file_based_convert_examples_to_features(train_examples, slot_list,
                                                class_types,
                                                FLAGS.max_seq_length,
                                                tokenizer, train_file)
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        train_input_fn = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True,
            slot_list=slot_list)
        estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

    if FLAGS.do_eval:
        if FLAGS.eval_set == 'dev':
            eval_examples = processor.get_dev_examples(FLAGS.data_dir)
        else:
            eval_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_eval_examples = len(eval_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on. These do NOT count towards the metric (all tf.metrics
            # support a per-instance weight, and these get a weight of 0.0).
            while len(eval_examples) % FLAGS.eval_batch_size != 0:
                eval_examples.append(run_classifier.PaddingInputExample())

        eval_file = os.path.join(FLAGS.output_dir,
                                 "eval.%s.tf_record" % FLAGS.eval_set)
        file_based_convert_examples_to_features(eval_examples, slot_list,
                                                class_types,
                                                FLAGS.max_seq_length,
                                                tokenizer, eval_file)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(eval_examples), num_actual_eval_examples,
                        len(eval_examples) - num_actual_eval_examples)
        tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

        # This tells the estimator to run through the entire set.
        eval_steps = None
        # However, if running eval on the TPU, you will need to specify the
        # number of steps.
        if FLAGS.use_tpu:
            assert len(eval_examples) % FLAGS.eval_batch_size == 0
            eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        eval_input_fn = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder,
            slot_list=slot_list)
        output_eval_file = os.path.join(FLAGS.output_dir,
                                        "eval_res.%s.json" % FLAGS.eval_set)
        if tf.gfile.Exists(output_eval_file):
            with tf.gfile.GFile(output_eval_file) as f:
                eval_result = json.load(f)
        else:
            eval_result = []

        ckpt_nums = [
            num.strip() for num in FLAGS.eval_ckpt.split(',')
            if num.strip() != ""
        ]
        for ckpt_num in ckpt_nums:
            result = estimator.evaluate(input_fn=eval_input_fn,
                                        steps=eval_steps,
                                        checkpoint_path=os.path.join(
                                            FLAGS.output_dir,
                                            "model.ckpt-%s" % ckpt_num))
            result_dict = {k: float(v) for k, v in result.items()}
            eval_result.append(result_dict)
            tf.logging.info("***** Eval results for %s set *****",
                            FLAGS.eval_set)
            for key in sorted(result.keys()):
                tf.logging.info("%s = %s", key, str(result[key]))
        if len(eval_result) > 0:
            with tf.gfile.GFile(output_eval_file, "w") as f:
                json.dump(eval_result, f, indent=2)

    if FLAGS.do_predict:
        if FLAGS.eval_set == 'dev':
            predict_examples = processor.get_dev_examples(FLAGS.data_dir)
        else:
            predict_examples = processor.get_test_examples(FLAGS.data_dir)
        num_actual_predict_examples = len(predict_examples)
        if FLAGS.use_tpu:
            # TPU requires a fixed batch size for all batches, therefore the number
            # of examples must be a multiple of the batch size, or else examples
            # will get dropped. So we pad with fake examples which are ignored
            # later on.
            while len(predict_examples) % FLAGS.predict_batch_size != 0:
                predict_examples.append(run_classifier.PaddingInputExample())

        predict_file = os.path.join(FLAGS.output_dir,
                                    "pred.%s.tf_record" % FLAGS.eval_set)
        file_based_convert_examples_to_features(predict_examples, slot_list,
                                                class_types,
                                                FLAGS.max_seq_length,
                                                tokenizer, predict_file)

        tf.logging.info("***** Running prediction *****")
        tf.logging.info("  Num examples = %d (%d actual, %d padding)",
                        len(predict_examples), num_actual_predict_examples,
                        len(predict_examples) - num_actual_predict_examples)
        tf.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

        predict_drop_remainder = True if FLAGS.use_tpu else False
        predict_input_fn = file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=predict_drop_remainder,
            slot_list=slot_list)

        ckpt_nums = [num for num in FLAGS.eval_ckpt.split(',') if num != ""]
        for ckpt_num in ckpt_nums:
            result = estimator.predict(input_fn=predict_input_fn,
                                       checkpoint_path=os.path.join(
                                           FLAGS.output_dir,
                                           "model.ckpt-%s" % ckpt_num))

            output_predict_file = os.path.join(
                FLAGS.output_dir,
                "pred_res.%s.%08d.json" % (FLAGS.eval_set, int(ckpt_num)))
            with tf.gfile.GFile(output_predict_file, "w") as f:
                num_written_ex = 0
                tf.logging.info("***** Predict results for %s set *****",
                                FLAGS.eval_set)
                list_prediction = []
                for (i, prediction) in enumerate(result):
                    # Str feature is encoded as bytes, which is not JSON serializable.
                    # Hence convert to str.
                    prediction["guid"] = prediction["guid"].decode(
                        "utf-8").split("-")
                    for slot in slot_list:
                        start_pd = prediction['start_prediction_%s' % slot]
                        start_gt = prediction['start_pos_%s' % slot]
                        end_pd = prediction['start_prediction_%s' % slot]
                        end_gt = prediction['end_pos_%s' % slot]
                        # TF uses int64, which is not JSON serializable.
                        # Hence convert to int.
                        prediction['class_prediction_%s' % slot] = int(
                            prediction['class_prediction_%s' % slot])
                        prediction['class_label_id_%s' % slot] = int(
                            prediction['class_label_id_%s' % slot])
                        prediction['start_prediction_%s' %
                                   slot] = int(start_pd)
                        prediction['start_pos_%s' % slot] = int(start_gt)
                        prediction['end_prediction_%s' % slot] = int(end_pd)
                        prediction['end_pos_%s' % slot] = int(end_gt)
                        prediction["input_ids_%s" % slot] = list(
                            map(int,
                                prediction["input_ids_%s" % slot].tolist()))
                        input_tokens = tokenizer.convert_ids_to_tokens(
                            prediction["input_ids_%s" % slot])
                        prediction["slot_prediction_%s" % slot] = ' '.join(
                            input_tokens[start_pd:end_pd + 1])
                        prediction["slot_groundtruth_%s" % slot] = ' '.join(
                            input_tokens[start_gt:end_gt + 1])
                    list_prediction.append(prediction)
                    if i >= num_actual_predict_examples:
                        break
                    num_written_ex += 1
                json.dump(list_prediction, f, indent=2)
            assert num_written_ex == num_actual_predict_examples
Esempio n. 2
0
              ("How can i recover old gmail account ?",
               "How can i delete my old gmail account ?"),
              ("How can i recover old gmail account ?",
               "How can i access my old gmail account ?")]

# In[ ]:

print("*******  Predictions on Custom Data ********")
# create `InputExample` for custom examples
predict_examples = processor.get_predict_examples(sent_pairs)
num_predict_examples = len(predict_examples)

# For TPU, We will append `PaddingExample` for maintaining batch size
if USE_TPU:
    while (len(predict_examples) % EVAL_BATCH_SIZE != 0):
        predict_examples.append(run_classifier.PaddingInputExample())

# Converting to features
predict_features = run_classifier.convert_examples_to_features(
    predict_examples, label_list, MAX_SEQ_LENGTH, tokenizer)

print('  Num examples = {}'.format(num_predict_examples))
print('  Batch size = {}'.format(PREDICT_BATCH_SIZE))

# Input function for prediction
predict_input_fn = run_classifier.input_fn_builder(predict_features,
                                                   seq_length=MAX_SEQ_LENGTH,
                                                   is_training=False,
                                                   drop_remainder=False)
result = list(estimator.predict(input_fn=predict_input_fn))
print(result)