Esempio n. 1
0
 def test_submit_xgb_train_task(self):
     model_params = {
         "booster": "gbtree",
         "eta": 0.4,
         "num_class": 3,
         "objective": "multi:softprob"
     }
     train_params = {"num_boost_round": 10}
     feature_columns_code = """
         xgboost_extended.feature_column.numeric_column(
             "sepal_length", shape=[1]),
         xgboost_extended.feature_column.numeric_column(
             "sepal_width", shape=[1]),
         xgboost_extended.feature_column.numeric_column(
             "petal_length", shape=[1]),
         xgboost_extended.feature_column.numeric_column(
             "petal_width", shape=[1])
     """
     train(testing.get_datasource(),
           "XGBoost",
           "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train",
           "select * from alifin_jtest_dev.sqlflow_iris_train",
           model_params,
           "e2etest_xgb_classify_model",
           None,
           train_params=train_params,
           feature_columns=eval("[%s]" % feature_columns_code),
           feature_metas=iris_feature_metas,
           label_meta=iris_label_meta,
           feature_column_names=iris_feature_column_names,
           feature_columns_code=feature_columns_code)
Esempio n. 2
0
 def test_submit_pai_random_forest_train_task(self):
     train(testing.get_datasource(),
           "RandomForests",
           "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train",
           "", {
               "tree_num": 3,
           },
           "e2e_test_random_forest",
           "",
           feature_column_names=iris_feature_column_names,
           label_meta=iris_label_meta)
Esempio n. 3
0
 def test_submit_pai_kmeans_train_task(self):
     train(
         testing.get_datasource(),
         "KMeans",
         "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train",
         "", {
             "excluded_columns": "class",
             "idx_table_name": "alifin_jtest_dev.e2e_test_kmeans_output_idx"
         },
         "e2e_test_kmeans",
         "",
         feature_column_names=[*iris_feature_column_names, "class"])
Esempio n. 4
0
    def test_submit_pai_random_forest_train_task(self):
        original_sql = """SELECT * FROM alifin_jtest_dev.sqlflow_iris_train
TO TRAIN RandomForests
WITH model.tree_num=3
LABEL class
INTO e2e_test_random_forest;"""
        train(testing.get_datasource(), original_sql,
              "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train", "",
              "RandomForests", "", feature_column_map, label_column,
              {"tree_num": 3}, {
                  "feature_column_names":
                  iris_feature_column_names,
                  "label_meta":
                  json.loads(label_column.get_field_desc()[0].to_json())
              }, "e2e_test_random_forest_wuyi", None)
Esempio n. 5
0
    def test_submit_pai_kmeans_train_task(self):
        original_sql = """SELECT * FROM alifin_jtest_dev.sqlflow_iris_train
TO TRAIN KMeans
WITH model.excluded_columns="class",
     model.idx_table_name="alifin_jtest_dev.e2e_test_kmeans_output_idx"
INTO e2e_test_kmeans;"""

        train(
            testing.get_datasource(), original_sql,
            "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train", "", "KMeans",
            "", feature_column_map, None, {
                "excluded_columns": "class",
                "idx_table_name": "alifin_jtest_dev.e2e_test_kmeans_output_idx"
            }, {"feature_column_names": iris_feature_column_names},
            "e2e_test_kmeans", None)
Esempio n. 6
0
    def test_submit_pai_train_task(self):
        model_params = dict()
        model_params["hidden_units"] = [10, 20]
        model_params["n_classes"] = 3

        original_sql = """
SELECT * FROM alifin_jtest_dev.sqlflow_test_iris_train
TO TRAIN DNNClassifier
WITH model.n_classes = 3, model.hidden_units = [10, 20]
LABEL class
INTO e2etest_pai_dnn;"""

        train(testing.get_datasource(), original_sql,
              "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train", "",
              "DNNClassifier", "", feature_column_map, label_column,
              model_params, {}, "e2etest_pai_dnn", None)
Esempio n. 7
0
    def test_submit_pai_train_task(self):
        model_params = dict()
        model_params["hidden_units"] = [10, 20]
        model_params["n_classes"] = 3

        # feature_columns_code will be used to save the training information
        # together with the saved model.
        feature_columns_code = """{"feature_columns": [
            tf.feature_column.numeric_column("sepal_length", shape=[1]),
            tf.feature_column.numeric_column("sepal_width", shape=[1]),
            tf.feature_column.numeric_column("petal_length", shape=[1]),
            tf.feature_column.numeric_column("petal_width", shape=[1]),
        ]}"""
        feature_columns = eval(feature_columns_code)

        train(testing.get_datasource(),
              "DNNClassifier",
              "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train",
              "",
              model_params,
              "e2etest_pai_dnn",
              None,
              feature_columns=feature_columns,
              feature_column_names=iris_feature_column_names,
              feature_column_names_map=iris_feature_column_names_map,
              feature_metas=iris_feature_metas,
              label_meta=iris_label_meta,
              validation_metrics="Accuracy".split(","),
              batch_size=1,
              epoch=1,
              validation_steps=1,
              verbose=0,
              max_steps=None,
              validation_start_delay_secs=0,
              validation_throttle_secs=0,
              save_checkpoints_steps=100,
              log_every_n_iter=10,
              load_pretrained_model=False,
              is_pai=True,
              feature_columns_code=feature_columns_code,
              model_repo_image="",
              original_sql='''
SELECT * FROM alifin_jtest_dev.sqlflow_test_iris_train
TO TRAIN DNNClassifier
WITH model.n_classes = 3, model.hidden_units = [10, 20]
LABEL class
INTO e2etest_pai_dnn;''')
Esempio n. 8
0
    def test_submit_xgb_train_task(self):
        original_sql = """SELECT * FROM iris.train
TO TRAIN xgboost.gbtree
WITH objective="multi:softprob", num_class=3, eta=0.4, booster="gbtree"
     validatioin.select="select * from alifin_jtest_dev.sqlflow_iris_test"
LABEL class
INTO e2etest_xgb_classify_model;"""
        model_params = {
            "eta": 0.4,
            "num_class": 3,
            "objective": "multi:softprob"
        }
        train_params = {"num_boost_round": 10}
        train(testing.get_datasource(), original_sql,
              "SELECT * FROM alifin_jtest_dev.sqlflow_iris_train",
              "SELECT * FROM alifin_jtest_dev.sqlflow_iris_test",
              "xgboost.gbtree", "", feature_column_map, label_column,
              model_params, train_params, "e2etest_xgb_classify_model", None)