toc = pd.read_table(tocfilename) # Estimate the model for one case to generate timing table with different regions of interest. #for f in folderlist: # path = 'ELBO/%s' %str(folderlist.index(f)) for dilution in np.unique(toc[toc.isRef == 'N'].Dilution): logging.debug("Processing dilution: %0.1f" % dilution) h5FileName = "Case%s.hdf5" % str(dilution).replace(".", "_", 1) try: with h5py.File(h5FileName, 'r') as f: pass except IOError as e: dsample = 10000 region = "top_400_positions" #caseFileList = ['./depth_chart/%s/%s/20100916_c3_p1.07_CGT.dc' % (dsample, region)] # For single file caseFileList = [ "./depth_chart/10000/top_400_positions/%s" % filename for filename in toc.Filename[toc.Dilution == dilution] ] logging.info('Estimate %s' % caseFileList) (r, n, loc, refb) = rvd3.load_depth(caseFileList) casephi, caseq = rvd3.ELBO_opt(r, n, seed=19860522, pool=60, dsample=dsample, region=region) logging.debug("Saving model in %s" % h5FileName) rvd3.save_model(h5FileName, r, n, casephi, caseq, loc, refb)
import multiprocessing as mp import logging import pdb # <codecell> logging.basicConfig(level=logging.DEBUG, format='%(levelname)s:%(module)s:%(message)s') rvddir = os.path.join('./') sys.path.insert(0, rvddir) import rvd3 ##pool =None pool = mp.Pool(processes=64) # Estimate the model for the control logging.debug("Processing control data.") h5FileName = "c4-34_MTH1_M0times1000.hdf5" try: with h5py.File(h5FileName, 'r') as f: pass except IOError as e: filename = "c4-34_MTH1.dc" controlFileList = [ "../2016-01-12_Run_rvd3_Dan_data_regions/dc/E1/%s" % filename ] (r, n, loc, refb) = rvd3.load_depth(controlFileList) controlphi, controlq = rvd3.ELBO_opt(r, n, seed=20160210, pool=62) logging.debug("Saving model in %s" % h5FileName) rvd3.save_model(h5FileName, r, n, controlphi, controlq, loc, refb)