Esempio n. 1
0
def _compute_sigrp(frac_sigRs=.1):
    '''
    Use the TESS parameters to estimate the measurement uncertainty on the 
    planet's radius. See http://adsabs.harvard.edu/abs/2008ApJ...689..499C 
    for equations.
    '''
    # Get the 3sigma results
    starnums, Nharps, Nnirps, Nspirou, texpharps, texpnirps, texpspirou, tobsharps, tobsnirps, tobsspirou, min_Nrv, bestspectrograph_Nrv, min_tobs, bestspectrograph_tobs = np.loadtxt(
        'Results/median_results_3sigma_mp.dat', delimiter=',').T

    # Get TESS parameters including photometric uncertainty
    inds = np.array([2, 3, 5, 6, 14])
    rp, P, K, Rs, logsigV = np.ascontiguousarray(get_TESS_data())[inds]

    # Compute transit depth uncertainty
    depth = compute_depth(rp, Rs)
    Gamma = compute_Gamma()
    T = compute_transit_duration(rp, P, K, Rs)
    Q = compute_Q(Gamma, T, depth, logsigV)
    sigdepth = compute_sigdepth(depth, Q)

    # compute corresponding planet radius uncertainty
    depth = unp.uarray(depth, sigdepth)
    Rs2 = rvs.m2Rearth(rvs.Rsun2m(unp.uarray(Rs, frac_sigRs * Rs)))
    rp2 = unp.sqrt(depth) * Rs2
    return rp, unp.std_devs(rp2)
def _P2h(P, Ps, T, mu=28.97):
    '''
    Convert the atmospheric pressure to a depth in Earth radii.

    Parameters
    ----------
    `P': array-like
        Atmospheric pressure as a function of depth in Pascals
    `T': array-like
        4D atmospheric temperature in kelvin

    '''
    # reshape arrays
    Ntime, NP, Nlat, Nlon = T.shape
    P4 = np.repeat(np.repeat(np.repeat(P[np.newaxis, :], Ntime,
                                       axis=0)[:, :, np.newaxis],
                             Nlat,
                             axis=2)[:, :, :, np.newaxis],
                   Nlon,
                   axis=3)
    assert P4.shape == T.shape
    Ps4 = np.repeat(Ps[:, np.newaxis, :, :], NP, axis=1)
    assert Ps4.shape == T.shape

    # compute depth vs pressure
    H = kb * T / (g * mu * mp)
    return rvs.m2Rearth(H * np.log(Ps4 / P4))
Esempio n. 3
0
def depth2rp(P_days, depth, duration_days, Ms, Rs):
    '''Compute the planet radius from the transit depth and 
    duration using the analtyical treatment from Mandel & Agol 2002'''
    assert 0 < depth < 1

    # compute distance from centres at T0
    sma = rvs.semimajoraxis(P_days, Ms, 0)
    a_Rs = rvs.AU2m(sma) / rvs.Rsun2m(Rs)
    assert a_Rs > 1
    b = rvs.impactparam_T(P_days, Ms, Rs, duration_days)
    assert abs(b) <= 1
    inc = float(rvs.inclination(P_days, Ms, Rs, b))
    z = compute_distance_center(a_Rs, inc)

    # compute size ratio (p=rp/Rs)
    p_simple = unp.sqrt(depth)
    if z <= 1 - p_simple:
        p = p_simple

    else:
        ps = np.logspace(-6, 0, 1000)
        depths = p2depth_grazing(ps, z)
        if (np.nanmax(depths) < z) or (np.nanmin(depths) > z):
            p = p_simple
        else:
            fint = interp1d(ps, depths)
            p = float(fint(depth))

    # compute planet radius
    rp = rvs.m2Rearth(rvs.Rsun2m(p * Rs))
    return rp
Esempio n. 4
0
def estimate_box_transit_model(P, T0, Rs, t, f, ef):
    '''Estimate the transit depth and duration given P and T0. Return 
    the box transit model.'''
    phase = foldAt(t, P, T0)
    phase[phase > .5] -= 1
    intransit_approx = (phase * P <= 15. / 60 / 24) & (phase * P >=
                                                       -15. / 60 / 24)
    depth = np.median(f[intransit_approx])
    duration = rvs.transit_width(P, Rs, Rs,
                                 rvs.m2Rearth(np.sqrt(depth) * rvs.Rsun2m(Rs)),
                                 0)
    model = llnl.box_transit_model((P, T0, depth, duration), t)
    return model
Esempio n. 5
0
def rpRs2rp(rpRs, Rs):
    rp = rvs.m2Rearth(rvs.Rsun2m(rpRs * Rs))
    return unp.nominal_values(rp), unp.std_devs(rp)
def sample_planet_params(self, index, postGAIA=True):
    '''sample distribution of planet parameters from observables and stellar pdfs'''
    # get stellar parameters PDFs either from derived from GAIA distances
    # or from original Kepler parameters (approximate distributions as skewnormal)
    g = int(index)
    print self.KepIDs[g]
    if postGAIA:
        path = '../GAIAMdwarfs/Gaia-DR2-distances_custom/DistancePosteriors/'
        try:
            samp_Rs, samp_Teff, samp_Ms = np.loadtxt('%s/KepID_allpost_%i' %
                                                     (path, self.KepIDs[g]),
                                                     delimiter=',',
                                                     usecols=(9, 10, 11)).T
        except IOError:
            samp_Rs, samp_Teff, samp_Ms = np.zeros(1000), np.zeros(
                1000), np.zeros(1000)

        if np.all(np.isnan(samp_Rs)) or np.all(np.isnan(samp_Teff)) or np.all(
                np.isnan(samp_Ms)):
            samp_Rs, samp_Teff, samp_Ms = np.zeros(1000), np.zeros(
                1000), np.zeros(1000)

        samp_Rs = resample_PDF(samp_Rs[np.isfinite(samp_Rs)],
                               samp_Rs.size,
                               sig=1e-3)
        samp_Teff = resample_PDF(samp_Teff[np.isfinite(samp_Teff)],
                                 samp_Teff.size,
                                 sig=5)
        samp_Ms = resample_PDF(samp_Ms[np.isfinite(samp_Ms)],
                               samp_Ms.size,
                               sig=1e-3)
    else:
        _, _, samp_Rs = get_samples_from_percentiles(self.Rss1[g],
                                                     self.ehi_Rss1[g],
                                                     self.elo_Rss1[g],
                                                     Nsamp=1e3)
        _, _, samp_Teff = get_samples_from_percentiles(self.Teffs1[g],
                                                       self.ehi_Teffs1[g],
                                                       self.elo_Teffs1[g],
                                                       Nsamp=1e3)
        _, _, samp_Ms = get_samples_from_percentiles(self.Mss1[g],
                                                     self.ehi_Mss1[g],
                                                     self.elo_Mss1[g],
                                                     Nsamp=1e3)

    # sample rp/Rs distribution from point estimates
    _, _, samp_rpRs = get_samples_from_percentiles(self.rpRs[g],
                                                   self.ehi_rpRs[g],
                                                   self.elo_rpRs[g],
                                                   Nsamp=samp_Rs.size)

    # compute planet radius PDF
    samp_rp = rvs.m2Rearth(rvs.Rsun2m(samp_rpRs * samp_Rs))
    v = np.percentile(samp_rp, (16, 50, 84))
    rps = v[1], v[2] - v[1], v[1] - v[0]

    # compute semi-major axis PDF
    samp_Ps = np.random.normal(self.Ps[g], self.e_Ps[g], samp_Ms.size)
    samp_as = rvs.semimajoraxis(samp_Ps, samp_Ms, 0)
    v = np.percentile(samp_as, (16, 50, 84))
    smas = v[1], v[2] - v[1], v[1] - v[0]

    # compute equilibrium T PDF (Bond albedo=0)
    samp_Teq = samp_Teff * np.sqrt(
        .5 * rvs.Rsun2m(samp_Rs) / rvs.AU2m(samp_as))
    v = np.percentile(samp_Teq, (16, 50, 84))
    Teqs = v[1], v[2] - v[1], v[1] - v[0]

    # compute insolation
    samp_F = samp_Rs**2 * (samp_Teff / 5778.)**4 / samp_as**2
    v = np.percentile(samp_F, (16, 50, 84))
    Fs = v[1], v[2] - v[1], v[1] - v[0]

    return rps, smas, Teqs, Fs
Esempio n. 7
0
    def get_data(self):
        self.fs = np.array(
            glob.glob('%s/%s_%i/*LC*' %
                      (self.folder, self.prefix, self.epicnum)))
        # remove planet search result (i.e. with index -99)
        if np.any(
                np.in1d(
                    self.fs, '%s/%s_%i/%sLC_-00099' %
                    (self.folder, self.prefix, self.epicnum, self.prefix))):
            g = np.where(
                np.in1d(
                    self.fs, '%s/%s_%i/LC_-00099' %
                    (self.folder, self.prefix, self.epicnum)))[0][0]
            self.fs = np.delete(self.fs, g)
        if self.fs.size == 0:
            return None
        self.Nsim = 0
        d = loadpickle(self.fs[0])
        self.Kepmag, self.logg, self.Ms, self.Rs, self.Teff = d.Kepmag, \
                                                              d.logg, \
                                                              d.Ms, d.Rs, \
                                                              d.Teff
        self.e_logg, self.e_Ms, self.e_Rs, self.e_Teff = d.e_logg, \
                                                         d.e_Ms, d.e_Rs, \
                                                         d.e_Teff
        Nmax = 20
        self.Nplanets_true, self.Nplanets_found = np.zeros(0), np.zeros(0)
        self.Ps, self.rps, self.isdet = np.zeros((0, Nmax)), np.zeros(
            (0, Nmax)), np.zeros((0, Nmax))
        self.Psfound, self.rpsfound, self.isFP = np.zeros((0, Nmax)), np.zeros(
            (0, Nmax)), np.zeros((0, Nmax))
        for i in range(self.fs.size):

            print float(i) / self.fs.size
            d = loadpickle(self.fs[i])

            if d.DONE:
                self.Nsim += 1
                self.Nplanets_true = np.append(self.Nplanets_true,
                                               d.Ptrue.size)
                filler = np.repeat(np.nan, Nmax - self.Nplanets_true[-1])
                Pin = np.append(d.Ptrue, filler)
                rpin = np.append(d.rptrue, filler)
                isdetin = np.append(d.is_detected, filler)

                self.Ps = np.append(self.Ps, Pin.reshape(1, Nmax), axis=0)
                self.rps = np.append(self.rps, rpin.reshape(1, Nmax), axis=0)
                self.isdet = np.append(self.isdet,
                                       isdetin.reshape(1, Nmax),
                                       axis=0)

                # get false positives TEMP because d.is_FP doesnt exist yet until
                # the simulation is rerun
                params = d.params_guess
                self.Nplanets_found = np.append(self.Nplanets_found,
                                                params.shape[0])
                filler2 = np.repeat(np.nan, Nmax - self.Nplanets_found[-1])
                Pinfound = np.append(params[:, 0], filler2)
                rpinfound = np.append(
                    rvs.m2Rearth(rvs.Rsun2m(np.sqrt(params[:, 2]) * d.Rs)),
                    filler2)
                self.Psfound = np.append(self.Psfound,
                                         Pinfound.reshape(1, Nmax),
                                         axis=0)
                self.rpsfound = np.append(self.rpsfound,
                                          rpinfound.reshape(1, Nmax),
                                          axis=0)

                is_FPin = np.array([
                    int(
                        np.invert(
                            np.any(np.isclose(d.Ptrue, params[i, 0],
                                              rtol=.02))))
                    for i in range(params.shape[0])
                ]).astype(bool)
                self.isFP = np.append(self.isFP,
                                      np.append(is_FPin,
                                                filler2).reshape(1, Nmax),
                                      axis=0)

        # trim excess planets
        end = np.where(np.all(np.isnan(self.Ps), axis=0))[0][0]
        self.Ps = self.Ps[:, :end]
        self.rps = self.rps[:, :end]
        self.isdet = self.isdet[:, :end]
        #end2 = np.where(np.all(np.isnan(self.PsFP), axis=0))[0][0]
        self.Psfound = self.Psfound[:, :end]
        self.rpsfound = self.rpsfound[:, :end]
        self.isFP = self.isFP[:, :end]
Esempio n. 8
0
def identify_EBs(params,
                 bjd,
                 fcorr,
                 ef,
                 Ms,
                 Rs,
                 Teff,
                 SNRthresh=3.,
                 rpmax=30,
                 detthresh=5,
                 Kep=False,
                 TESS=False):
    '''For each proposed planet in params, run through a variety of checks to 
    vetting the planetary candidates and identify EB false positives.'''
    assert len(params.shape) == 2
    Nplanets = params.shape[0]
    paramsout, isEB, maybeEB = np.zeros_like(params), np.zeros(Nplanets), \
                               np.zeros(Nplanets)
    EBconditions = np.zeros((Nplanets, 5)).astype(bool)
    EBcondition_labels = np.array([
        'rpRs > 0.5',
        'rp>%.1f' % rpmax, 'secondary eclipse detected', 'transit is V-shaped',
        'transit duration is too long for a planet'
    ])
    for i in range(Nplanets):

        # get best fit parameters
        paramsout[i] = _fit_params(params[i],
                                   bjd,
                                   fcorr,
                                   ef,
                                   Ms,
                                   Rs,
                                   Teff,
                                   Kep=Kep,
                                   TESS=TESS)

        # ensure the planet is not too big
        rpRs = np.sqrt(params[i, 2])
        isEB[i] = 1 if rpRs > .5 else isEB[i]
        EBconditions[i, 0] = True if rpRs > .5 else False
        rp = rvs.m2Rearth(rvs.Rsun2m(rpRs * Rs))
        isEB[i] = 1 if rp > rpmax else isEB[i]
        EBconditions[i, 1] = True if rp > rpmax else False

        # check for secondary eclipse
        eclipse = _is_eclipse(params[i], bjd, fcorr, ef, detthresh)
        isEB[i] = 1 if eclipse else isEB[i]
        EBconditions[i, 2] = True if eclipse else False

        # check for ellipsoidal variations
        #ellipsoidal = _is_ellipsoidal()
        #isEB[i] = 1 if ellipsoidal else isEB[i]
        # how can I do this without knowing the parameters of the binary?

        # flag V-shaped transits (does not implies an EB)
        Vshaped, duration = _is_Vshaped(params[i], bjd, fcorr, ef, Ms, Rs,
                                        Teff, Kep, TESS)
        maybeEB[i] = 1 if Vshaped else maybeEB[i]
        EBconditions[i, 3] = True if Vshaped else False

        # is duration reasonable? # Gunther+2016
        EBduration = _is_EB_duration(duration, paramsout[i, 0], Ms, Rs)
        isEB[i] = 1 if EBduration else isEB[i]
        EBconditions[i, 4] = True if EBduration else False

    # save planet and EB parameters
    maybeEB[isEB == 1] = 1
    isEB, maybeEB = isEB.astype(bool), maybeEB.astype(bool)
    params, EBparams, maybeEBparams = params[np.invert(isEB)], params[isEB], \
                                      params[maybeEB]
    return params, EBparams, maybeEBparams, EBconditions, EBcondition_labels