def __init__(self, prior_weights=[1.,0,0], name='constant1'):
        self.labelset  = np.asarray(config.labelset)
        self.model_name = name
        self.force_recompute_prior = False
        
        self.params  = {
            'beta'             : 50,     # contrast parameter
            'return_arguments' :['image','y'],
            # optimization parameter
            'per_label': True,
            'optim_solver':'unconstrained',
            'rtol'      : 1e-6,
            'maxiter'   : 2e3,
            }
        
        laplacian_type = 'std_b50'
        logger.info('laplacian type is: {}'.format(laplacian_type))
        
        self.weight_functions = {
            'std_b10'     : lambda im: wflib.weight_std(im, beta=10),
            'std_b50'     : lambda im: wflib.weight_std(im, beta=50),
            'std_b100'    : lambda im: wflib.weight_std(im, beta=100),
            'inv_b100o1'  : lambda im: wflib.weight_inv(im, beta=100, offset=1),
            'pdiff_r1b10': lambda im: wflib.weight_patch_diff(im, r0=1, beta=10),
            'pdiff_r2b10': lambda im: wflib.weight_patch_diff(im, r0=2, beta=10),
            'pdiff_r1b50' : lambda im: wflib.weight_patch_diff(im, r0=1, beta=50),
            }
        self.weight_function = self.weight_functions[laplacian_type]
       
        self.prior_models = [
            prior_models.Constant,
            prior_models.Entropy_no_D,
            prior_models.Intensity,
            prior_models.Variance_no_D,
            prior_models.Variance_no_D_Cmap,
            ]
        self.prior_weights = prior_weights

        logger.info('Model name = {}, using prior weights={}'\
            .format(self.model_name, self.prior_weights))
    def __init__(self,
            use_parallel=True, 
            **kwargs
            ):
    
        ## paths
        self.dir_reg = config.dir_reg
        self.dir_inf = config.dir_inf
        self.dir_svm = config.dir_svm
        self.training_vols = config.vols

        ## params
        self.force_recompute_prior = False
        self.use_parallel = use_parallel    

        self.labelset = np.asarray(config.labelset)

        C = kwargs.pop('C',1.0)
        Cprime = kwargs.pop('Cprime',0.0)
        self.scale_only    = kwargs.pop('scale_only', False)
        self.loss_type     = kwargs.pop('loss_type', 'squareddiff')
        self.loss_factor   = kwargs.pop('loss_factor', 1.)
        self.use_latent    = kwargs.pop('use_latent', False)
        self.approx_aci    = kwargs.pop('approx_aci', False)
        self.debug         = kwargs.pop('debug', False)
        self.retrain       = kwargs.pop('retrain', True)
        self.minimal_svm   = kwargs.pop('minimal', False)
        self.one_iteration = kwargs.pop('one_iteration', False)
        self.start_script  = kwargs.pop('start_script', '')       
        self.use_mosek     = kwargs.pop('use_mosek',True)
        #switch_loss        = kwargs.pop('switch_loss', False)

        crop = kwargs.pop('crop','none')
        if crop=='none':
            self.crop = False
        else:
           self.crop = True
           ncrop = int(crop)
           self.slice_size = ncrop
           self.slice_step = ncrop

        ntrain = kwargs.pop('ntrain', 'all')
        if ntrain.isdigit():
             n = int(ntrain)
             self.select_vol = slice(n,n+1)
        else:
             self.select_vol = slice(None)
               
        ## parameters for rw learning
        self.rwparams_svm = {
            'labelset':self.labelset,
            # optimization
            'rtol': 1e-6,
            'maxiter': 1e3,
            'per_label':True,
            'optim_solver':'unconstrained',
            # contrained optim
            'use_mosek': self.use_mosek,
            'logbarrier_mu': 10,
            'logbarrier_initial_t': 10,
            'logbarrier_modified': False,
            'logbarrier_maxiter': 10,
            'newton_maxiter': 50,
            }
        
        ## parameters for svm api
        self.svm_api_params = {
            'loss_type': self.loss_type, #'laplacian','squareddif', 'ideal', 'none'
            'loss_factor': self.loss_factor,
            'approx_aci': self.approx_aci,
            }
            
        ## parameters for rw inference
        self.rwparams_inf = {
            'labelset':self.labelset,
            'return_arguments':['image','y'],
            # optimization
            'rtol': 1e-6,
            'maxiter': 1e3,
            'per_label':True,
            'optim_solver':'unconstrained',
            }
            
        ## svm params
        self.svmparams = {
            'C': C,
            'Cprime': Cprime,
            'nitermax': 100,
            'epsilon': 1e-5,
            #'do_switch_loss': switch_loss,
            # latent
            'latent_niter_max': 100,
            'latent_epsilon': 1e-3,
            'latent_use_parallel': self.use_parallel,
            }

        self.trainparams = {
            'scale_only': self.scale_only,
            }       
     
        ## weight functions
        if self.minimal_svm:
            self.hand_tuned_w = [1, 1e-2]
            self.weight_functions = {'std_b50': lambda im: wflib.weight_std(im, beta=50)}
            self.prior_models = {'constant': models.Constant}
        else:
            self.hand_tuned_w = [1.0, 0.0, 0.0, 0.0, 1e-2, 0.0, 0.0]
            self.weight_functions = {
                'std_b10'     : lambda im,i,j: wflib.weight_std(im,i,j, beta=10),
                'std_b50'     : lambda im,i,j: wflib.weight_std(im,i,j, beta=50),
                'std_b100'    : lambda im,i,j: wflib.weight_std(im,i,j, beta=100),
                'inv_b100o1'  : lambda im,i,j: wflib.weight_inv(im,i,j, beta=100, offset=1),
                }
            self.prior_models = {
                'constant': models.Constant,
                'entropy': models.Entropy_no_D,
                'intensity': models.Intensity,
                }

        ## indices of w
        nlaplacian = len(self.weight_functions)
        nprior = len(self.prior_models)
        self.indices_laplacians = np.arange(nlaplacian)
        self.indices_priors = np.arange(nlaplacian,nlaplacian + nprior)
        
        ## compute the scale of psi
        #self.psi_scale = [1e4] * nlaplacian + [1e5] * nprior
        self.psi_scale = [1.0] * nlaplacian + [1.0] * nprior
        self.svmparams['psi_scale'] = self.psi_scale
 
        ## make arrays of function
        self.laplacian_functions = self.weight_functions.values()
        self.laplacian_names     = self.weight_functions.keys()
        self.prior_functions     = self.prior_models.values()
        self.prior_names         = self.prior_models.keys()
        
        ## parallel ?
        if self.use_parallel:
            self.comm = mpi.COMM
            self.MPI_rank = mpi.RANK
            self.MPI_size = mpi.SIZE
            self.isroot = self.MPI_rank==0
            if self.MPI_size==1:
                logger.warning('Found only one process. Not using parallel')
                self.use_parallel = False
            self.svmparams['use_parallel'] = self.use_parallel
            self.svmparams['latent_use_parallel'] = self.use_parallel
        else:
            self.isroot = True
            
        if self.isroot:
            logger.info('passed these command line arguments: {}'.format(str(sys.argv)))
            logger.info('using parallel?: {}'.format(use_parallel))
            logger.info('using latent?: {}'.format(self.use_latent))
            logger.info('train data: {}'.format(ntrain))
            strkeys = ', '.join(self.laplacian_names)
            logger.info('laplacian functions (in order): {}'.format(strkeys))
            strkeys = ', '.join(self.prior_names)
            logger.info('prior models (in order): {}'.format(strkeys))
            logger.info('using loss type: {}'.format(self.loss_type))
            logger.info('SVM parameters: {}'.format(self.svmparams))
            logger.info('Computing one iteration at a time ?: {}'.format(self.one_iteration))
            if self.debug:
                logger.info('debug mode, no saving')
            else:
                logger.info('writing svm output to: {}'.format(self.dir_svm))
def compute_features(test, train, y):
    im = io_analyze.load(config.dir_reg + test + train + 'reggray.hdr')
    nim = im/np.std(im)
     
    prior,mask = load_or_compute_prior_and_mask(
        test, force_recompute=False)
    seeds = (-1)*mask.astype(int)

    from rwsegment import rwsegment_prior_models as models
    from rwsegment import weight_functions as wflib
    rwparams = {
            'labelset': np.asarray(config.labelset),
        }

    weight_functions = {
        'std_b10'     : lambda im: wflib.weight_std(im, beta=10),
        'std_b50'     : lambda im: wflib.weight_std(im, beta=50),
        'std_b100'    : lambda im: wflib.weight_std(im, beta=100),
        'inv_b100o1'  : lambda im: wflib.weight_inv(im, beta=100, offset=1),
        # 'pdiff_r1b10': lambda im: wflib.weight_patch_diff(im, r0=1, beta=10),
        # 'pdiff_r2b10': lambda im: wflib.weight_patch_diff(im, r0=2, beta=10),
        # 'pdiff_r1b50' : lambda im: wflib.weight_patch_diff(im, r0=1, beta=50),
        }

    prior_models = {
        'constant': models.Constant,
        'entropy': models.Entropy_no_D,
        'intensity': models.Intensity,
        }
    
    ## indices of w
    nlaplacian = len(weight_functions)
    nprior = len(prior_models)
    indices_laplacians = np.arange(nlaplacian)
    indices_priors = np.arange(nlaplacian,nlaplacian + nprior)
  
    laplacian_functions = weight_functions.values()
    laplacian_names     = weight_functions.keys()
    prior_functions     = prior_models.values()
    prior_names         = prior_models.keys()
    

    #from svm_rw_api import MetaAnchor 
    #anchor_api = MetaAnchor(
    #    prior,
    #    prior_functions,
    #    weights_priors,
    #    image=im,
    #    )

    from rwsegment import rwsegment
    for fname in weight_functions:
        wf = weight_functions[fname]
        en_rw = rwsegment.energy_rw(
            nim,
            y,
            seeds=seeds,
            weight_function=wf,
            **rwparams
            )
        print fname, en_rw

    for mname in prior_models:
        pm = prior_models[mname](prior,1., image=nim)
        en_anchor = rwsegment.energy_anchor(
            nim,
            y,
            pm,
            seeds=seeds,
            **rwparams
            )
        print mname, en_anchor
def compute_objective(test, y, w):
    im = io_analyze.load(config.dir_reg + test + 'gray.hdr')
    nim = im/np.std(im)
     
    prior,mask = load_or_compute_prior_and_mask(
        test, force_recompute=False)
    seeds = (-1)*mask.astype(int)

    from rwsegment import rwsegment_prior_models as models
    from rwsegment import weight_functions as wflib
    rwparams = {
            'labelset': np.asarray(config.labelset),

            # optimization
            'rtol': 1e-6,
            'maxiter': 1e3,
            'per_label':True,
            'optim_solver':'unconstrained',
            }

    weight_functions = {
        'std_b10'     : lambda im: wflib.weight_std(im, beta=10),
        'std_b50'     : lambda im: wflib.weight_std(im, beta=50),
        'std_b100'    : lambda im: wflib.weight_std(im, beta=100),
        'inv_b100o1'  : lambda im: wflib.weight_inv(im, beta=100, offset=1),
        # 'pdiff_r1b10': lambda im: wflib.weight_patch_diff(im, r0=1, beta=10),
        # 'pdiff_r2b10': lambda im: wflib.weight_patch_diff(im, r0=2, beta=10),
        # 'pdiff_r1b50' : lambda im: wflib.weight_patch_diff(im, r0=1, beta=50),
        }

    prior_models = {
        'constant': models.Constant,
        'entropy': models.Entropy_no_D,
        'intensity': models.Intensity,
        }
    
    ## indices of w
    nlaplacian = len(weight_functions)
    nprior = len(prior_models)
    indices_laplacians = np.arange(nlaplacian)
    indices_priors = np.arange(nlaplacian,nlaplacian + nprior)
  
    laplacian_functions = weight_functions.values()
    laplacian_names     = weight_functions.keys()
    prior_functions     = prior_models.values()
    prior_names         = prior_models.keys()
    
    weights_laplacians = np.asarray(w)[indices_laplacians]
    weights_priors = np.asarray(w)[indices_priors]

    def meta_weight_functions(im,_w):
        ''' meta weight function'''
        data = 0
        for iwf,wf in enumerate(laplacian_functions):
            ij,_data = wf(im)
            data += _w[iwf]*_data
        return ij, data
    weight_function = lambda im: meta_weight_functions(im, weights_laplacians)
    
    

    from svm_rw_api import MetaAnchor 
    anchor_api = MetaAnchor(
        prior,
        prior_functions,
        weights_priors,
        image=nim,
        )

    from rwsegment import rwsegment
    en_rw = rwsegment.energy_rw(
            nim,
            y,
            seeds=seeds,
            weight_function=weight_function,
            **rwparams
            )

    en_anchor = rwsegment.energy_anchor(
            nim,
            y,
            anchor_api,
            seeds=seeds,
            **rwparams
            )
    obj = en_rw + en_anchor
    return obj
Esempio n. 5
0
def compute_features(test, train, y):
    im = io_analyze.load(config.dir_reg + test + train + 'reggray.hdr')
    nim = im / np.std(im)

    prior, mask = load_or_compute_prior_and_mask(test, force_recompute=False)
    seeds = (-1) * mask.astype(int)

    from rwsegment import rwsegment_prior_models as models
    from rwsegment import weight_functions as wflib
    rwparams = {
        'labelset': np.asarray(config.labelset),
    }

    weight_functions = {
        'std_b10': lambda im: wflib.weight_std(im, beta=10),
        'std_b50': lambda im: wflib.weight_std(im, beta=50),
        'std_b100': lambda im: wflib.weight_std(im, beta=100),
        'inv_b100o1': lambda im: wflib.weight_inv(im, beta=100, offset=1),
        # 'pdiff_r1b10': lambda im: wflib.weight_patch_diff(im, r0=1, beta=10),
        # 'pdiff_r2b10': lambda im: wflib.weight_patch_diff(im, r0=2, beta=10),
        # 'pdiff_r1b50' : lambda im: wflib.weight_patch_diff(im, r0=1, beta=50),
    }

    prior_models = {
        'constant': models.Constant,
        'entropy': models.Entropy_no_D,
        'intensity': models.Intensity,
    }

    ## indices of w
    nlaplacian = len(weight_functions)
    nprior = len(prior_models)
    indices_laplacians = np.arange(nlaplacian)
    indices_priors = np.arange(nlaplacian, nlaplacian + nprior)

    laplacian_functions = weight_functions.values()
    laplacian_names = weight_functions.keys()
    prior_functions = prior_models.values()
    prior_names = prior_models.keys()

    #from svm_rw_api import MetaAnchor
    #anchor_api = MetaAnchor(
    #    prior,
    #    prior_functions,
    #    weights_priors,
    #    image=im,
    #    )

    from rwsegment import rwsegment
    for fname in weight_functions:
        wf = weight_functions[fname]
        en_rw = rwsegment.energy_rw(nim,
                                    y,
                                    seeds=seeds,
                                    weight_function=wf,
                                    **rwparams)
        print fname, en_rw

    for mname in prior_models:
        pm = prior_models[mname](prior, 1., image=nim)
        en_anchor = rwsegment.energy_anchor(nim,
                                            y,
                                            pm,
                                            seeds=seeds,
                                            **rwparams)
        print mname, en_anchor
Esempio n. 6
0
def compute_objective(test, y, w):
    im = io_analyze.load(config.dir_reg + test + 'gray.hdr')
    nim = im / np.std(im)

    prior, mask = load_or_compute_prior_and_mask(test, force_recompute=False)
    seeds = (-1) * mask.astype(int)

    from rwsegment import rwsegment_prior_models as models
    from rwsegment import weight_functions as wflib
    rwparams = {
        'labelset': np.asarray(config.labelset),

        # optimization
        'rtol': 1e-6,
        'maxiter': 1e3,
        'per_label': True,
        'optim_solver': 'unconstrained',
    }

    weight_functions = {
        'std_b10': lambda im: wflib.weight_std(im, beta=10),
        'std_b50': lambda im: wflib.weight_std(im, beta=50),
        'std_b100': lambda im: wflib.weight_std(im, beta=100),
        'inv_b100o1': lambda im: wflib.weight_inv(im, beta=100, offset=1),
        # 'pdiff_r1b10': lambda im: wflib.weight_patch_diff(im, r0=1, beta=10),
        # 'pdiff_r2b10': lambda im: wflib.weight_patch_diff(im, r0=2, beta=10),
        # 'pdiff_r1b50' : lambda im: wflib.weight_patch_diff(im, r0=1, beta=50),
    }

    prior_models = {
        'constant': models.Constant,
        'entropy': models.Entropy_no_D,
        'intensity': models.Intensity,
    }

    ## indices of w
    nlaplacian = len(weight_functions)
    nprior = len(prior_models)
    indices_laplacians = np.arange(nlaplacian)
    indices_priors = np.arange(nlaplacian, nlaplacian + nprior)

    laplacian_functions = weight_functions.values()
    laplacian_names = weight_functions.keys()
    prior_functions = prior_models.values()
    prior_names = prior_models.keys()

    weights_laplacians = np.asarray(w)[indices_laplacians]
    weights_priors = np.asarray(w)[indices_priors]

    def meta_weight_functions(im, _w):
        ''' meta weight function'''
        data = 0
        for iwf, wf in enumerate(laplacian_functions):
            ij, _data = wf(im)
            data += _w[iwf] * _data
        return ij, data

    weight_function = lambda im: meta_weight_functions(im, weights_laplacians)

    from svm_rw_api import MetaAnchor
    anchor_api = MetaAnchor(
        prior,
        prior_functions,
        weights_priors,
        image=nim,
    )

    from rwsegment import rwsegment
    en_rw = rwsegment.energy_rw(nim,
                                y,
                                seeds=seeds,
                                weight_function=weight_function,
                                **rwparams)

    en_anchor = rwsegment.energy_anchor(nim,
                                        y,
                                        anchor_api,
                                        seeds=seeds,
                                        **rwparams)
    obj = en_rw + en_anchor
    return obj
    def __init__(self, use_parallel=True, **kwargs):

        ## paths
        self.dir_reg = config.dir_reg
        self.dir_inf = config.dir_inf
        self.dir_svm = config.dir_svm
        self.training_vols = config.vols

        ## params
        self.force_recompute_prior = False
        self.use_parallel = use_parallel

        self.labelset = np.asarray(config.labelset)

        C = kwargs.pop('C', 1.0)
        Cprime = kwargs.pop('Cprime', 0.0)
        self.scale_only = kwargs.pop('scale_only', False)
        self.loss_type = kwargs.pop('loss_type', 'squareddiff')
        self.loss_factor = kwargs.pop('loss_factor', 1.)
        self.use_latent = kwargs.pop('use_latent', False)
        self.approx_aci = kwargs.pop('approx_aci', False)
        self.debug = kwargs.pop('debug', False)
        self.retrain = kwargs.pop('retrain', True)
        self.minimal_svm = kwargs.pop('minimal', False)
        self.one_iteration = kwargs.pop('one_iteration', False)
        self.start_script = kwargs.pop('start_script', '')
        self.use_mosek = kwargs.pop('use_mosek', True)
        #switch_loss        = kwargs.pop('switch_loss', False)

        crop = kwargs.pop('crop', 'none')
        if crop == 'none':
            self.crop = False
        else:
            self.crop = True
            ncrop = int(crop)
            self.slice_size = ncrop
            self.slice_step = ncrop

        ntrain = kwargs.pop('ntrain', 'all')
        if ntrain.isdigit():
            n = int(ntrain)
            self.select_vol = slice(n, n + 1)
        else:
            self.select_vol = slice(None)

        ## parameters for rw learning
        self.rwparams_svm = {
            'labelset': self.labelset,
            # optimization
            'rtol': 1e-6,
            'maxiter': 1e3,
            'per_label': True,
            'optim_solver': 'unconstrained',
            # contrained optim
            'use_mosek': self.use_mosek,
            'logbarrier_mu': 10,
            'logbarrier_initial_t': 10,
            'logbarrier_modified': False,
            'logbarrier_maxiter': 10,
            'newton_maxiter': 50,
        }

        ## parameters for svm api
        self.svm_api_params = {
            'loss_type':
            self.loss_type,  #'laplacian','squareddif', 'ideal', 'none'
            'loss_factor': self.loss_factor,
            'approx_aci': self.approx_aci,
        }

        ## parameters for rw inference
        self.rwparams_inf = {
            'labelset': self.labelset,
            'return_arguments': ['image', 'y'],
            # optimization
            'rtol': 1e-6,
            'maxiter': 1e3,
            'per_label': True,
            'optim_solver': 'unconstrained',
        }

        ## svm params
        self.svmparams = {
            'C': C,
            'Cprime': Cprime,
            'nitermax': 100,
            'epsilon': 1e-5,
            #'do_switch_loss': switch_loss,
            # latent
            'latent_niter_max': 100,
            'latent_epsilon': 1e-3,
            'latent_use_parallel': self.use_parallel,
        }

        self.trainparams = {
            'scale_only': self.scale_only,
        }

        ## weight functions
        if self.minimal_svm:
            self.hand_tuned_w = [1, 1e-2]
            self.weight_functions = {
                'std_b50': lambda im: wflib.weight_std(im, beta=50)
            }
            self.prior_models = {'constant': models.Constant}
        else:
            self.hand_tuned_w = [1.0, 0.0, 0.0, 0.0, 1e-2, 0.0, 0.0]
            self.weight_functions = {
                'std_b10':
                lambda im, i, j: wflib.weight_std(im, i, j, beta=10),
                'std_b50':
                lambda im, i, j: wflib.weight_std(im, i, j, beta=50),
                'std_b100':
                lambda im, i, j: wflib.weight_std(im, i, j, beta=100),
                'inv_b100o1':
                lambda im, i, j: wflib.weight_inv(im, i, j, beta=100, offset=1
                                                  ),
            }
            self.prior_models = {
                'constant': models.Constant,
                'entropy': models.Entropy_no_D,
                'intensity': models.Intensity,
            }

        ## indices of w
        nlaplacian = len(self.weight_functions)
        nprior = len(self.prior_models)
        self.indices_laplacians = np.arange(nlaplacian)
        self.indices_priors = np.arange(nlaplacian, nlaplacian + nprior)

        ## compute the scale of psi
        #self.psi_scale = [1e4] * nlaplacian + [1e5] * nprior
        self.psi_scale = [1.0] * nlaplacian + [1.0] * nprior
        self.svmparams['psi_scale'] = self.psi_scale

        ## make arrays of function
        self.laplacian_functions = self.weight_functions.values()
        self.laplacian_names = self.weight_functions.keys()
        self.prior_functions = self.prior_models.values()
        self.prior_names = self.prior_models.keys()

        ## parallel ?
        if self.use_parallel:
            self.comm = mpi.COMM
            self.MPI_rank = mpi.RANK
            self.MPI_size = mpi.SIZE
            self.isroot = self.MPI_rank == 0
            if self.MPI_size == 1:
                logger.warning('Found only one process. Not using parallel')
                self.use_parallel = False
            self.svmparams['use_parallel'] = self.use_parallel
            self.svmparams['latent_use_parallel'] = self.use_parallel
        else:
            self.isroot = True

        if self.isroot:
            logger.info('passed these command line arguments: {}'.format(
                str(sys.argv)))
            logger.info('using parallel?: {}'.format(use_parallel))
            logger.info('using latent?: {}'.format(self.use_latent))
            logger.info('train data: {}'.format(ntrain))
            strkeys = ', '.join(self.laplacian_names)
            logger.info('laplacian functions (in order): {}'.format(strkeys))
            strkeys = ', '.join(self.prior_names)
            logger.info('prior models (in order): {}'.format(strkeys))
            logger.info('using loss type: {}'.format(self.loss_type))
            logger.info('SVM parameters: {}'.format(self.svmparams))
            logger.info('Computing one iteration at a time ?: {}'.format(
                self.one_iteration))
            if self.debug:
                logger.info('debug mode, no saving')
            else:
                logger.info('writing svm output to: {}'.format(self.dir_svm))