def _start(self, app_context, **kwargs):
        self.qty = self.get_stg_config_value("qty", 1)
        self.threshold = self.get_stg_config_value("threshold", 1)

        self.xiv = app_context.ref_data_mgr.get_inst('XIV', 'SMART')
        self.vxx = app_context.ref_data_mgr.get_inst('VXX', 'SMART')
        self.vxv = app_context.ref_data_mgr.get_inst('VXV', 'SMART')
        self.vix = app_context.ref_data_mgr.get_inst(
            'VIX', 'SMART')  # TODO: Review index
        instruments = [self.vxx, self.xiv, self.vix]

        self.vix_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.vix.get_symbol())  # non tradable
        self.vxv_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.vxv.get_symbol())  # non tradable
        self.xiv_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.xiv.get_symbol())
        self.vxx_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.vxx.get_symbol())
        self.vix_strm = BehaviorSubject(0)
        self.vxv_strm = BehaviorSubject(0)
        self.ratio_strm = rx.Observable \
            .zip(self.vix_strm, self.vxv_strm, lambda x, y: x / y) \
            .subscribe(self.on_ratio)

        super(VixVxvRatio, self)._start(app_context, **kwargs)
class VixVxvRatio(Strategy):
    def __init__(self, stg_id: str, stg_cls: str, state: StrategyState = None):
        super(VixVxvRatio, self).__init__(stg_id=stg_id,
                                          stg_cls=stg_cls,
                                          state=state)
        self.day_count = 0
        self.order = None

    def _start(self, app_context: Context) -> None:
        self.qty = self._get_stg_config("qty", 1)
        self.threshold = self._get_stg_config("threshold", 1)

        self.xiv = app_context.ref_data_mgr.get_inst('XIV', 'SMART')
        self.vxx = app_context.ref_data_mgr.get_inst('VXX', 'SMART')
        self.vxv = app_context.ref_data_mgr.get_inst('VXV', 'SMART')
        self.vix = app_context.ref_data_mgr.get_inst(
            'VIX', 'SMART')  # TODO: Review index
        instruments = [self.vxx, self.xiv, self.vix]

        self.vix_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.vix.get_symbol())  # non tradable
        self.vxv_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.vxv.get_symbol())  # non tradable
        self.xiv_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.xiv.get_symbol())
        self.vxx_bar = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.vxx.get_symbol())
        self.vix_strm = BehaviorSubject(0)
        self.vxv_strm = BehaviorSubject(0)
        self.ratio_strm = rx.Observable \
            .zip(self.vix_strm, self.vxv_strm, lambda x, y: x / y) \
            .subscribe(self.on_ratio)

        super(VixVxvRatio, self)._start(app_context)

    def _stop(self):
        super(VixVxvRatio, self)._stop()

    def on_bar(self, bar):
        if bar.inst_id == self.vix.id():
            self.vix_strm.on_next(bar.close)
        elif bar.inst_id == self.vxv.id():
            self.vxv_strm.on_next(bar.close)

    def on_ratio(self, ratio):
        # what is order is not filled and there is signal again?
        if self.order is None:
            # long XIV at the close when VIX index closed below the VXV index
            # long XIV when ratio < 0.92
            if ratio < self.threshold[0]:
                # logger.info("%s,B,%.2f" % (bar.timestamp, bar.close))
                self.order = self.market_order(inst_id=self.xiv.id(),
                                               action=Buy,
                                               qty=self.qty)
            # long VXX when ratio > 1.08
            elif ratio > self.threshold[1]:
                # logger.info("%s,B,%.2f" % (bar.timestamp, bar.close))
                self.order = self.market_order(inst_id=self.vxx,
                                               action=Buy,
                                               qty=self.qty)
class VixVxvRatio(Strategy):
    def __init__(self, stg_id=None, stg_configs=None):
        super(VixVxvRatio, self).__init__(stg_id=stg_id, stg_configs=stg_configs)
        self.day_count = 0
        self.order = None

    def _start(self, app_context, **kwargs):
        self.qty = self.get_stg_config_value("qty", 1)
        self.threshold = self.get_stg_config_value("threshold", 1)

        self.xiv = app_context.ref_data_mgr.get_inst('XIV', 'SMART')
        self.vxx = app_context.ref_data_mgr.get_inst('VXX', 'SMART')
        self.vxv = app_context.ref_data_mgr.get_inst('VXV', 'SMART')
        self.vix = app_context.ref_data_mgr.get_inst('VIX', 'SMART')  # TODO: Review index
        instruments = [self.vxx, self.xiv, self.vix]

        self.vix_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.vix.get_symbol())  # non tradable
        self.vxv_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.vxv.get_symbol())  # non tradable
        self.xiv_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.xiv.get_symbol())
        self.vxx_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.vxx.get_symbol())
        self.vix_strm = BehaviorSubject(0)
        self.vxv_strm = BehaviorSubject(0)
        self.ratio_strm = rx.Observable \
            .zip(self.vix_strm, self.vxv_strm, lambda x, y: x / y) \
            .subscribe(self.on_ratio)

        super(VixVxvRatio, self)._start(app_context, **kwargs)

    def _stop(self):
        super(VixVxvRatio, self)._stop()

    def on_bar(self, bar):
        if bar.inst_id == self.vix.id():
            self.vix_strm.on_next(bar.close)
        elif bar.inst_id == self.vxv.id():
            self.vxv_strm.on_next(bar.close)

    def on_ratio(self, ratio):
        # what is order is not filled and there is signal again?
        if self.order is None:
            # long XIV at the close when VIX index closed below the VXV index
            # long XIV when ratio < 0.92
            if ratio < self.threshold[0]:
                # logger.info("%s,B,%.2f" % (bar.timestamp, bar.close))
                self.order = self.market_order(inst_id=self.xiv.id(),
                                               action=OrdAction.BUY,
                                               qty=self.qty)
            # long VXX when ratio > 1.08
            elif ratio > self.threshold[1]:
                # logger.info("%s,B,%.2f" % (bar.timestamp, bar.close))
                self.order = self.market_order(inst_id=self.vxx, action=OrdAction.BUY, qty=self.qty)
Esempio n. 4
0
def publish_value(self, initial_value, selector=None):
    """Returns an observable sequence that is the result of invoking the
    selector on a connectable observable sequence that shares a single
    subscription to the underlying sequence and starts with initial_value.

    This operator is a specialization of Multicast using a BehaviorSubject.

    Example:
    res = source.publish_value(42)
    res = source.publish_value(42, lambda x: x.map(lambda y: y * y))

    Keyword arguments:
    initial_value -- {Mixed} Initial value received by observers upon
        subscription.
    selector -- {Function} [Optional] Optional selector function which can
        use the multicasted source sequence as many times as needed, without
        causing multiple subscriptions to the source sequence. Subscribers
        to the given source will receive immediately receive the initial
        value, followed by all notifications of the source from the time of
        the subscription on.

    Returns {Observable} An observable sequence that contains the elements
    of a sequence produced by multicasting the source sequence within a
    selector function.
    """

    if selector:

        def subject_selector():
            return BehaviorSubject(initial_value)

        return self.multicast(subject_selector=subject_selector,
                              selector=selector)
    else:
        return self.multicast(BehaviorSubject(initial_value))
Esempio n. 5
0
def _publish_value(initial_value: Any, mapper: Mapper = None) -> Callable[[Observable], Observable]:
    if mapper:
        def subject_factory(scheduler):
            return BehaviorSubject(initial_value)

        return ops.multicast(subject_factory=subject_factory, mapper=mapper)
    return ops.multicast(BehaviorSubject(initial_value))
Esempio n. 6
0
    def _start(self, app_context, **kwargs):
        self.ou_params = self.get_stg_config_value("ou_params", 1)
        self.gamma = self.get_stg_config_value("gamma", 1)

        self.bar_0 = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.app_context.app_config.instrument_ids[0])
        self.bar_0.start(app_context)

        self.bar_1 = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.app_context.app_config.instrument_ids[1])
        self.bar_1.start(app_context)

        self.instruments = self.app_context.app_config.instrument_ids
        self.log_spot_0 = BehaviorSubject(0)
        self.log_spot_1 = BehaviorSubject(0)
        self.spread_stream = rx.Observable \
            .zip(self.log_spot_0, self.log_spot_1, lambda x, y: [x, y, x - y]) \
            .subscribe(self.rebalance)

        super(PairTradingWithOUSpread, self)._start(app_context, **kwargs)
class ServerState:
    db_data = None
    monitor_data = None

    bc_monitorSub = BehaviorSubject(None)
    db_monitorSub = BehaviorSubject(None)

    bc_monitor = Observable
    db_monitor = Observable

    def set_db_data(self, data):
        self.db_data = data
        self.bc_monitor.map(self.set_db_data(self.db_data)).publish()

    def get_db_data(self):
        return self.db_datas

    def setMonitor(self, d):
        self.monitor_data = d

    def getMonitor(self):
        return self.monitor_data

    # select method will use to get observerable
    def select(self, observer_name):
        if observer_name == BC_MONITOR_SUB:
            return self.bc_monitorSub
        elif observer_name == DB_MONITOR_SUB:
            return self.db_monitorSub
        else:
            # print observer_name + ' is not recognize observable.'
            return None

    # dispatch method will use to update data on the observer
    def dispatch(self, observer_name, payload):
        if observer_name == BC_MONITOR_SUB:
            self.bc_monitorSub.on_next(payload)
            return payload
        elif observer_name == DB_MONITOR_SUB:
            self.db_monitorSub.on_next(payload)
            return payload
        else:
            # print observer_name + ' is not recognize observable.'
            return None
def main(inputs, starting_floor):
    floor_C = BehaviorSubject(starting_floor)
    inputs.floor_changed_S.subscribe(floor_C)

    calls_C = BehaviorSubject(set())
    calls_S = inputs.called_S \
        .map(lambda call: call.floor) \
        .scan(lambda called_floors, floor: called_floors | set([floor]), set())
    calls_S.subscribe(calls_C)

    selections_C = BehaviorSubject(set())
    inputs.floor_selected_S \
        .scan(lambda selections, floor: selections | set([floor]), set()) \
        .subscribe(selections_C)

    resume_S = inputs.tick_S \
        .with_latest_from(selections_C, lambda _, selections: first(selections)) \
        .filter(cmp(not_, is_none))

    # TODO (TS 2016-05-16) Don't fire if motor is already moving.
    motor_started_S = inputs.called_S \
        .map(lambda call: call.floor) \
        .merge(inputs.floor_selected_S, resume_S) \
        .with_latest_from(floor_C, determine_direction)

    stop_for_call_S = inputs.floor_changed_S \
        .with_latest_from(calls_C, arrived_on_called_floor) \
        .filter(identity) \
        .map(always(None))

    stop_for_selection_S = inputs.floor_changed_S \
        .with_latest_from(selections_C, arrived_on_selected_floor) \
        .filter(identity) \
        .map(always(None))

    motor_stopped_S = Observable.merge(stop_for_call_S, stop_for_selection_S)

    motor_C = BehaviorSubject(None)
    motor_change_S = Observable.merge(motor_started_S, motor_stopped_S)
    motor_change_S.subscribe(motor_C)

    return motor_C
Esempio n. 9
0
    def _start(self, app_context: Context) -> None:
        self.ou_params = self._get_stg_config("ou_params", default=1)
        self.gamma = self._get_stg_config("gamma", default=1)

        self.instruments = app_context.config.get_app_config("instrumentIds")
        self.bar_0 = self.app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.instruments[0])
        self.bar_1 = self.app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.instruments[1])

        self.bar_0.start(app_context)
        self.bar_1.start(app_context)

        self.log_spot_0 = BehaviorSubject(0)
        self.log_spot_1 = BehaviorSubject(0)
        self.spread_stream = rx.Observable \
            .zip(self.log_spot_0, self.log_spot_1, lambda x, y: [x, y, x - y]) \
            .subscribe(self.rebalance)

        super(PairTradingWithOUSpread, self)._start(app_context)
Esempio n. 10
0
class Player:
    def __init__(self, id, name, ws_subject, size, pos):
        self.id = id
        self.ws_subject = ws_subject
        self.name = name
        self.size = BehaviorSubject(size)
        self.pos = BehaviorSubject(pos)
        self.dir = BehaviorSubject(None)

        ws_subject.to_observable().map(lambda d: json.loads(d.data)).filter(lambda m: m["t"] == "d").subscribe(self.dir)

        self.dir.subscribe(lambda d: print(d))

    def partial_data(self):
        return {"id": self.id, "size": self.size.value, "pos": self.pos.value}

    def full_data(self):
        data = self.partial_data()
        data["name"] = self.name
        return data
Esempio n. 11
0
    def __init__(self, id, name, ws_subject, size, pos):
        self.id = id
        self.ws_subject = ws_subject
        self.name = name
        self.size = BehaviorSubject(size)
        self.pos = BehaviorSubject(pos)
        self.dir = BehaviorSubject(None)

        ws_subject.to_observable().map(lambda d: json.loads(d.data)).filter(lambda m: m["t"] == "d").subscribe(self.dir)

        self.dir.subscribe(lambda d: print(d))
    def _start(self, app_context, **kwargs):
        self.qty = self.get_stg_config_value("qty", 1)
        self.threshold = self.get_stg_config_value("threshold", 1)

        self.xiv = app_context.ref_data_mgr.get_inst('XIV', 'SMART')
        self.vxx = app_context.ref_data_mgr.get_inst('VXX', 'SMART')
        self.vxv = app_context.ref_data_mgr.get_inst('VXV', 'SMART')
        self.vix = app_context.ref_data_mgr.get_inst('VIX', 'SMART')  # TODO: Review index
        instruments = [self.vxx, self.xiv, self.vix]

        self.vix_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.vix.get_symbol())  # non tradable
        self.vxv_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.vxv.get_symbol())  # non tradable
        self.xiv_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.xiv.get_symbol())
        self.vxx_bar = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.vxx.get_symbol())
        self.vix_strm = BehaviorSubject(0)
        self.vxv_strm = BehaviorSubject(0)
        self.ratio_strm = rx.Observable \
            .zip(self.vix_strm, self.vxv_strm, lambda x, y: x / y) \
            .subscribe(self.on_ratio)

        super(VixVxvRatio, self)._start(app_context, **kwargs)
Esempio n. 13
0
    def _start(self, app_context, **kwargs):
        self.ou_params = self.get_stg_config_value("ou_params", 1)
        self.gamma = self.get_stg_config_value("gamma", 1)

        self.bar_0 = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" %
            self.app_context.app_config.instrument_ids[0])
        self.bar_0.start(app_context)

        self.bar_1 = app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" %
            self.app_context.app_config.instrument_ids[1])
        self.bar_1.start(app_context)

        self.instruments = self.app_context.app_config.instrument_ids
        self.log_spot_0 = BehaviorSubject(0)
        self.log_spot_1 = BehaviorSubject(0)
        self.spread_stream = rx.Observable \
            .zip(self.log_spot_0, self.log_spot_1, lambda x, y: [x, y, x - y]) \
            .subscribe(self.rebalance)

        super(PairTradingWithOUSpread, self)._start(app_context, **kwargs)
Esempio n. 14
0
class SerialHelper:
    ser = serial.Serial('/dev/ttyACM0', 115200)
    def __init__(self):
        self.messages = BehaviorSubject("")
        self.read()

    # def read(self, recieved):
    #     while self.ser.in_waiting:
    #         recieved(self.ser.readline())
    #



    def read(self):
        self.threadObj = threading.Thread(target=worker, args=(self,))
        self.threadObj.start()

    def setMessage(self, message):
        self.messages.on_next(message)

    def write(self, message):
        self.ser.write(message);
Esempio n. 15
0
    def __init__(self, new_players, exiting_players):
        self._new_players = []
        self._players = []
        self._removed_players = []

        new_players.subscribe(self.add_player)
        exiting_players.subscribe(self.remove_player)

        # streams api
        self.new_players_broadcast = Subject()
        self.removed_players_broadcast = Subject()
        self.collisions = Subject()
        self.players = BehaviorSubject([])
        self.players_count = self.players \
            .map(lambda ps: len(ps))
Esempio n. 16
0
 def __init__(self, parent=None):
     super().__init__(parent)
     self._commandSubject = BehaviorSubject(kine.Command.arc(0, 0))
Esempio n. 17
0
 def subject_factory(scheduler):
     return BehaviorSubject(initial_value)
Esempio n. 18
0
class Integrator:
    def __init__(self, new_players, exiting_players):
        self._new_players = []
        self._players = []
        self._removed_players = []

        new_players.subscribe(self.add_player)
        exiting_players.subscribe(self.remove_player)

        # streams api
        self.new_players_broadcast = Subject()
        self.removed_players_broadcast = Subject()
        self.collisions = Subject()
        self.players = BehaviorSubject([])
        self.players_count = self.players \
            .map(lambda ps: len(ps))

    def add_player(self, player):
        self._new_players.append(player)

    def remove_player(self, player):
        self._removed_players.append(player)

    def broadcast(self, message):
        for p in self._players:
            p.ws_subject.on_next(message)

    def update(self, dt):
        if len(self._new_players):
            self._do_add_players()

        self._integrate_speed(dt)
        self._collide()

        if len(self._removed_players):
            self._do_remove_players()

    def _collide(self):
        for a, b in combinations(self._players, 2):
            posa = a.pos.value
            posb = b.pos.value
            sizea = a.size.value
            sizeb = b.size.value

            distance = math.sqrt((posa["x"] - posb["x"]) ** 2 + (posa["y"] - posb["y"]) ** 2)
            if distance < sizea + sizeb:
                self.collisions.on_next((a, b))

    def _integrate_speed(self, dt):
        for player in self._players:
            direction = player.dir.value
            if direction is not None \
                    and direction["x"] != 0 \
                    and direction["y"] != 0:
                position = player.pos.value
                speed = 300 * dt
                result = {
                    "x": position["x"] + direction["x"] * speed,
                    "y": position["y"] + direction["y"] * speed
                }
                player.pos.on_next(result)

    def _do_add_players(self):
        self._players.extend(self._new_players)
        self.new_players_broadcast.on_next(
                (self._players, self._new_players.copy()))
        self._new_players.clear()
        self.players.on_next(self._players)

    def _do_remove_players(self):
        for p in self._removed_players:
            self._players.remove(p)
        self.removed_players_broadcast.on_next(
                (self._players, self._removed_players.copy()))
        self._removed_players.clear()
        self.players.on_next(self._players)
Esempio n. 19
0
class ServerState():
    """description of class"""
    __metaclass__ = Singleton
    DEVICE_MODE = 'HBS'
    MAC_ADDRESS_HSU = ''
    LINK_STATE = ''
    NUM_OF_LINKS = 0

    monitor_data = None
    SwCapabilities = None

    def setSwCapabilities(self, s):
        self.SwCapabilities = s

    def getSwCapabilities(self):
        self.SwCapabilities

    def setMonitor(self, d):
        self.monitor_data = d

    def getMonitor(self):
        return self.monitor_data

    #this stream will hold all hsu devices on the sector of the HBS
    hsuDevicesSub = BehaviorSubject(None)
    registeredHsusSub = BehaviorSubject({})
    #this stream will hold the local monitor of the device
    monitorSub = BehaviorSubject(None)

    #this stream will hold the local recentEventSub of the device
    recentEventSub = BehaviorSubject(None)

    #api data stream
    systemSub = BehaviorSubject(None)
    deviceModeSub = BehaviorSubject(None)
    radioSub = BehaviorSubject(None)
    networkSub = BehaviorSubject(None)
    portsSub = BehaviorSubject(None)
    wifiSub = BehaviorSubject(None)

    #events streams
    onFlushingLogsSub = BehaviorSubject(None)

    #dispath method will use to update data on the observer
    def dispath(self, observer_name, payload):
        if observer_name == consts.MONITOR_SUB:
            self.monitorSub.on_next(payload)
            return payload
        elif observer_name == consts.SYSTEM_SUB:
            self.systemSub.on_next(payload)
            return payload
        #elif observer_name == consts.DEVICE_MODE_SUB:
        #    self.deviceModeSub.on_next(payload)
        #    return payload
        elif observer_name == consts.RADIO_SUB:
            self.radioSub.on_next(payload)
            return payload
        elif observer_name == consts.PORT_SUB:
            self.portsSub.on_next(payload)
            return payload
        elif observer_name == consts.WIFI_SUB:
            self.wifiSub.on_next(payload)
            return payload
        elif observer_name == consts.HSU_DEVICES_SUB:
            self.hsuDevicesSub.on_next(payload)
            return payload
        elif observer_name == consts.REGISTERED_HSU_SUB:
            self.registeredHsusSub.on_next(payload)
            return payload
        elif observer_name == consts.FLUSH_LOG_SUB:
            self.onFlushingLogsSub.on_next(payload)
            return payload
        else:
            print observer_name + ' is not recognize observable.'
            return None

    #select method will use to get observerable
    def select(self, observer_name):
        if observer_name == consts.MONITOR_SUB:
            return self.monitorSub
        elif observer_name == 'network':
            return self.networkSub
        elif observer_name == consts.SYSTEM_SUB:
            return self.systemSub
        #elif observer_name == consts.DEVICE_MODE_SUB:
        #   return self.deviceModeSub
        elif observer_name == consts.RADIO_SUB:
            return self.radioSub
        elif observer_name == consts.PORT_SUB:
            return self.portsSub
        elif observer_name == consts.WIFI_SUB:
            return self.wifiSub
        elif observer_name == consts.NETWORK_SUB:
            return self.wifiSub
        elif observer_name == consts.HSU_DEVICES_SUB:
            return self.hsuDevicesSub
        elif observer_name == consts.REGISTERED_HSU_SUB:
            return self.registeredHsusSub
        elif observer_name == consts.FLUSH_LOG_SUB:
            return self.onFlushingLogsSub
        else:
            print observer_name + ' is not recognize observable.'
            return None

    def getDeviceMode(self):
        return self.DEVICE_MODE

    def setDeviceMode(self, mode):
        self.DEVICE_MODE = mode

    def getMacAdressHsu(self):
        return self.MAC_ADDRESS_HSU

    def setMacAdressHsu(self, address):
        self.MAC_ADDRESS_HSU = address

    @classmethod
    def setNumOfLinks(self, number):
        self.NUM_OF_LINKS = number

    @classmethod
    def getNumOfLinks(self):
        return self.NUM_OF_LINKS
Esempio n. 20
0
 def action1(scheduler, state=None):
     subject[0] = BehaviorSubject(100)
Esempio n. 21
0
 def __init__(self):
     self.messages = BehaviorSubject("")
     self.read()
Esempio n. 22
0
class PairTradingWithOUSpread(Strategy):
    """
    This is the baby version that assume the asset we are trading paris
    that the spread follows Ornstein-Uhlenbeck mean reverting process with known parameters in advance
    in reality this is not true
    So for more advanced version the strategy itself should able to call statistical inference logic to
    get the appreciation rate and volatility of the asset

    So now this class is used as testing purpose
    """

    def __init__(self, stg_id=None, stg_configs=None):
        """
        :param stg_id:
        :param portfolio:
        :param instruments:
        :param ou_params: a dictionary with k, theta, eta as keys
        :param gamma: risk preference
        :param trading_config:
        :return:
        """
        super(PairTradingWithOUSpread, self).__init__(stg_id=stg_id, stg_configs=stg_configs)
        self.buy_order = None

    def _start(self, app_context, **kwargs):
        self.ou_params = self.get_stg_config_value("ou_params", 1)
        self.gamma = self.get_stg_config_value("gamma", 1)

        self.bar_0 = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.app_context.app_config.instrument_ids[0])
        self.bar_0.start(app_context)

        self.bar_1 = app_context.inst_data_mgr.get_series("Bar.%s.Time.86400" % self.app_context.app_config.instrument_ids[1])
        self.bar_1.start(app_context)

        self.instruments = self.app_context.app_config.instrument_ids
        self.log_spot_0 = BehaviorSubject(0)
        self.log_spot_1 = BehaviorSubject(0)
        self.spread_stream = rx.Observable \
            .zip(self.log_spot_0, self.log_spot_1, lambda x, y: [x, y, x - y]) \
            .subscribe(self.rebalance)

        super(PairTradingWithOUSpread, self)._start(app_context, **kwargs)

    def _stop(self):
        super(PairTradingWithOUSpread, self)._stop()

    def on_bar(self, bar):
        # logger.info("%s,%s,%.2f" % (bar.inst_id, bar.timestamp, bar.close))
        if bar.inst_id == self.instruments[0]:
            self.log_spot_0.on_next(math.log(bar.close))
        elif bar.inst_id == self.instruments[1]:
            self.log_spot_1.on_next(math.log(bar.close))

    def rebalance(self, spread_triple):
        if spread_triple[0] == 0:
            return
        # we have to rebalance on each bar
        k = self.ou_params['k']
        eta = self.ou_params['eta']
        theta = self.ou_params['theta']
        spread = spread_triple[2]

        weight = k * (spread - theta) / eta ** 2
        portfolio = self.get_portfolio()
        allocation_0 = -portfolio.total_equity * weight
        allocation_1 = portfolio.total_equity * weight
        # TODO: need to check if the portoflio.positions is empty
        delta_0 = allocation_0
        delta_1 = allocation_1
        if self.instruments[0] in portfolio.positions.keys():
            delta_0 = allocation_0 - portfolio.positions[self.instruments[0]].current_value()
        if self.instruments[1] in portfolio.positions.keys():
            delta_1 = allocation_1 - portfolio.positions[self.instruments[1]].current_value()

        qty = abs(delta_0) / spread_triple[0]  # assume no lot size here
        if delta_0 > 0:
            self.market_order(inst_id=self.instruments[0], action=OrdAction.BUY, qty=qty)
        else:
            self.market_order(inst_id=self.instruments[0], action=OrdAction.SELL, qty=qty)

        qty = abs(delta_1) / spread_triple[1]  # assume no lot size here
        if delta_1 > 0:
            self.market_order(inst_id=self.instruments[1], action=OrdAction.BUY, qty=qty)
        else:
            self.market_order(inst_id=self.instruments[1], action=OrdAction.SELL, qty=qty)
 def action1(scheduler, state=None):
     nonlocal subject
     subject = BehaviorSubject(100)
Esempio n. 24
0
class PairTradingWithOUSpread(Strategy):
    """
    This is the baby version that assume the asset we are trading paris
    that the spread follows Ornstein-Uhlenbeck mean reverting process with known parameters in advance
    in reality this is not true
    So for more advanced version the strategy itself should able to call statistical inference logic to
    get the appreciation rate and volatility of the asset

    So now this class is used as testing purpose
    """
    def __init__(self, stg_id: str, stg_cls: str, state: StrategyState = None):
        super(PairTradingWithOUSpread, self).__init__(stg_id=stg_id,
                                                      stg_cls=stg_cls,
                                                      state=state)
        self.buy_order = None

    def _start(self, app_context: Context) -> None:
        self.ou_params = self._get_stg_config("ou_params", default=1)
        self.gamma = self._get_stg_config("gamma", default=1)

        self.instruments = app_context.config.get_app_config("instrumentIds")
        self.bar_0 = self.app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.instruments[0])
        self.bar_1 = self.app_context.inst_data_mgr.get_series(
            "Bar.%s.Time.86400" % self.instruments[1])

        self.bar_0.start(app_context)
        self.bar_1.start(app_context)

        self.log_spot_0 = BehaviorSubject(0)
        self.log_spot_1 = BehaviorSubject(0)
        self.spread_stream = rx.Observable \
            .zip(self.log_spot_0, self.log_spot_1, lambda x, y: [x, y, x - y]) \
            .subscribe(self.rebalance)

        super(PairTradingWithOUSpread, self)._start(app_context)

    def _stop(self):
        super(PairTradingWithOUSpread, self)._stop()

    def on_bar(self, bar):
        # logger.info("%s,%s,%.2f" % (bar.inst_id, bar.timestamp, bar.close))
        if bar.inst_id == self.instruments[0]:
            self.log_spot_0.on_next(math.log(bar.close))
        elif bar.inst_id == self.instruments[1]:
            self.log_spot_1.on_next(math.log(bar.close))

    def rebalance(self, spread_triple):
        if spread_triple[0] == 0:
            return
        # we have to rebalance on each bar
        k = self.ou_params['k']
        eta = self.ou_params['eta']
        theta = self.ou_params['theta']
        spread = spread_triple[2]

        weight = k * (spread - theta) / eta**2
        portfolio = self.get_portfolio()
        allocation_0 = -portfolio.total_equity * weight
        allocation_1 = portfolio.total_equity * weight
        # TODO: need to check if the portoflio.positions is empty
        delta_0 = allocation_0
        delta_1 = allocation_1
        if self.instruments[0] in portfolio.positions.keys():
            delta_0 = allocation_0 - portfolio.positions[
                self.instruments[0]].current_value()
        if self.instruments[1] in portfolio.positions.keys():
            delta_1 = allocation_1 - portfolio.positions[
                self.instruments[1]].current_value()

        qty = abs(delta_0) / spread_triple[0]  # assume no lot size here
        if delta_0 > 0:
            self.market_order(inst_id=self.instruments[0], action=Buy, qty=qty)
        else:
            self.market_order(inst_id=self.instruments[0],
                              action=Sell,
                              qty=qty)

        qty = abs(delta_1) / spread_triple[1]  # assume no lot size here
        if delta_1 > 0:
            self.market_order(inst_id=self.instruments[1], action=Buy, qty=qty)
        else:
            self.market_order(inst_id=self.instruments[1],
                              action=Sell,
                              qty=qty)
Esempio n. 25
0
 def rxValue(self, subj, pred, default):  # -> BehaviorSubject:
     value = BehaviorSubject(default)
     self._rxValues[value] = (subj, pred, default)
     self._rxUpdate(subj, pred, default, value)
     return value
Esempio n. 26
0
 def __init__(self):
     self.data: Subject = Subject()
     self.threats: BehaviorSubject = BehaviorSubject(0)
Esempio n. 27
0
class Backend(QObject):
    def __init__(self, parent=None):
        super().__init__(parent)
        self._commandSubject = BehaviorSubject(kine.Command.arc(0, 0))

    @pyqtSlot()
    def forward(self):
        self._commandSubject.on_next(kine.Command.arc(0.5, 0.0))

    @pyqtSlot()
    def backward(self):
        self._commandSubject.on_next(kine.Command.arc(-0.5, 0.0))

    @pyqtSlot()
    def left(self):
        self._commandSubject.on_next(kine.Command.arc(0.5, 0.5))

    @pyqtSlot()
    def right(self):
        self._commandSubject.on_next(kine.Command.arc(0.5, -0.5))

    @pyqtSlot()
    def stop(self):
        self._commandSubject.on_next(kine.Command.arc(0.0, 0.0))

    @pyqtSlot()
    def pivotLeft(self):
        self._commandSubject.on_next(
            kine.Command(velocity=0, angularVelocity=0.3))

    @pyqtSlot()
    def pivotRight(self):
        self._commandSubject.on_next(
            kine.Command(velocity=0, angularVelocity=-0.3))

    @pyqtSlot()
    def toOrigin(self):
        self._commandSubject.on_next(
            kine.Command.arc_to(self.robot.pose, Vec2.zero(), 0.5))

    @property
    def commands(self):
        return self._commandSubject
Esempio n. 28
0
 def subject_selector():
     return BehaviorSubject(initial_value)