Esempio n. 1
0
def test_dnf_form() -> None:
    assert venn_from_str('1 & 2', int).to_dnf_set().is_equivalent_to(
        venn_from_str('1 & 2', int))
    assert venn_from_str('1 | 2', int).to_dnf_set().is_equivalent_to(
        venn_from_str('1 | 2', int))
    assert UniversalSet().to_dnf_set().is_equivalent_to(UniversalSet())
    assert EmptySet().to_dnf_set().is_equivalent_to(EmptySet())
Esempio n. 2
0
def test_superset_subset_for_unary_sets() -> None:
    # UniversalSet == UniversalSet
    assert UniversalSet().is_superset_of(UniversalSet())
    assert UniversalSet().is_subset_of(UniversalSet())

    # UniversalSet contains all other sets
    assert UniversalSet().is_superset_of(EmptySet())
    assert UniversalSet().is_superset_of(ValueSet(1))

    # EmptySet is contained in all sets
    assert EmptySet().is_subset_of(EmptySet())
    assert EmptySet().is_superset_of(EmptySet())
    assert EmptySet().is_subset_of(ValueSet(2))

    # PropertySets <-> PropertySets
    assert ValueSet(2).is_superset_of(ValueSet(2))
    assert ValueSet(2).is_subset_of(ValueSet(2))
    assert not ValueSet(2).is_subset_of(ValueSet(3))
    assert not ValueSet(2).is_superset_of(ValueSet(3))

    # PropertySet <-> UniversalSet
    assert ValueSet(1).is_subset_of(UniversalSet())
    assert not UniversalSet().is_subset_of(ValueSet(1))
    assert UniversalSet().is_superset_of(ValueSet(1))
    assert not ValueSet(1).is_superset_of(UniversalSet())

    # PropertySet <-> EmptySet
    assert ValueSet(2).is_superset_of(EmptySet())
    assert not EmptySet().is_superset_of(ValueSet(2))
    assert EmptySet().is_subset_of(ValueSet(1))
    assert not ValueSet(1).is_subset_of(EmptySet())
Esempio n. 3
0
def test_nary_sets_constructor() -> None:
    assert Union() == EmptySet()
    assert Intersection() == UniversalSet()
    assert DisjunctiveUnion() == EmptySet()

    assert Union(venn_from_str('1', int)).is_equivalent_to(venn_from_str('1', int))
    assert Intersection(venn_from_str('1', int)).is_equivalent_to(venn_from_str('1', int))
    assert DisjunctiveUnion(venn_from_str('1', int)).is_equivalent_to(venn_from_str('1', int))
Esempio n. 4
0
def test_is_equivalent_to() -> None:
    assert UniversalSet().is_equivalent_to(UniversalSet())
    assert EmptySet().is_equivalent_to(EmptySet())

    assert not UniversalSet().is_equivalent_to(ValueSet(1))
    assert not ValueSet(1).is_equivalent_to(UniversalSet())

    assert UniversalSet().is_equivalent_to(Union(ValueSet(1), Complement(ValueSet(1))))
Esempio n. 5
0
def test_nested_list_form() -> None:
    assert venn_from_str('1', int).to_dnf_nested_list() == [[venn_from_str('1', int)]]

    x = venn_from_str('1 & ( 2 | 3 )', int)
    assert [ValueSet(1), ValueSet(2)] in x.to_dnf_nested_list()
    assert [ValueSet(1), ValueSet(3)] in x.to_dnf_nested_list()

    assert venn_from_str('1 & 2', int).to_dnf_nested_list() == [[ValueSet(1), ValueSet(2)]]
    assert venn_from_str('1 | 2', int).to_dnf_nested_list() == [[ValueSet(1)], [ValueSet(2)]]

    assert UniversalSet().to_dnf_nested_list() == [[UniversalSet()]]
    assert EmptySet().to_dnf_nested_list() == [[EmptySet()]]
Esempio n. 6
0
def test_list_form() -> None:
    assert venn_from_str('1', int).to_dnf_list() == [venn_from_str('1', int)]

    assert venn_from_str('1 & 2', int).to_dnf_list() == [venn_from_str('1 & 2', int)]
    assert set(venn_from_str('1 | 2', int).to_dnf_list()) == {ValueSet(1), ValueSet(2)}

    x = venn_from_str('1 & ( 2 | 3 )', int)
    assert any(elem.is_equivalent_to(venn_from_str('1 & 2', int)) for elem in x.to_dnf_list())
    assert any(elem.is_equivalent_to(venn_from_str('1 & 3', int)) for elem in x.to_dnf_list())

    assert UniversalSet().to_dnf_list() == [UniversalSet()]
    assert EmptySet().to_dnf_list() == [EmptySet()]
Esempio n. 7
0
def test_union_properties(sets: List[Set]) -> None:
    for x in sets:
        assert UniversalSet().is_equivalent_to(Union(x, Complement(x)))
        assert UniversalSet().is_equivalent_to(Union(Complement(x), x))

        assert Union(x, Complement(x)).is_equivalent_to(UniversalSet())
        assert Union(Complement(x), x).is_equivalent_to(UniversalSet())

        assert x.is_equivalent_to(Union(EmptySet(), x))
        assert x.is_equivalent_to(Union(x, EmptySet()))

        assert UniversalSet().is_equivalent_to(Union(UniversalSet(), x))
        assert UniversalSet().is_equivalent_to(Union(x, UniversalSet()))

        assert x.is_equivalent_to(Union(x, x))
Esempio n. 8
0
        def synthesis_factor(state_target: StateTarget) -> VennSet[Target]:
            fac = EmptySet()  # type: VennSet[Target]
            for rxn in (x for x in reaction_targets
                        if x.synthesises(state_target)):
                fac = Union(fac, ValueSet(rxn))

            for prod_rxn in (x for x in reaction_targets
                             if x.produces(state_target)):
                sources = []
                for source in prod_rxn.consumed_targets:
                    sources.append(
                        [source] +
                        [x for x in reaction_targets if x.synthesises(source)])

                for source_combi in product(*sources):
                    # At least one source should be synthesised.
                    if all(isinstance(x, StateTarget) for x in source_combi):
                        continue
                    assert any(
                        isinstance(x, ReactionTarget) and x.synthesised_targets
                        for x in source_combi)

                    fac = Union(
                        fac,
                        Intersection(ValueSet(prod_rxn),
                                     *(ValueSet(x) for x in source_combi)))

            return fac
Esempio n. 9
0
        def kappa(state_target: StateTarget, level: int) -> VennSet[Target]:
            res = EmptySet()  # type: VennSet[Target]

            for r in (x for x in reaction_targets if x.consumes(state_target)):
                rxn_term = ValueSet(r)  # type: VennSet[Target]
                for s in (x for x in state_targets if r.consumes(x)):
                    rxn_term = Intersection(rxn_term, ValueSet(s),
                                            degradation_factor(s))
                res = Union(res, rxn_term)

            return res
Esempio n. 10
0
def sets() -> List[Set]:
    return [
        EmptySet(),
        ValueSet(1),
        UniversalSet(),
        Union(ValueSet(1), ValueSet(2)),
        Intersection(ValueSet(1), ValueSet(2)),
        Intersection(ValueSet(1), Complement(ValueSet(2))),
        Union(Intersection(ValueSet(1), ValueSet(2)), ValueSet(3)),
        Union(Intersection(ValueSet(1), ValueSet(2)), Intersection(ValueSet(3), ValueSet(4))),
        Union(Complement(Union(ValueSet(1), Complement(ValueSet(2)))), Intersection(ValueSet(3), ValueSet(4)))
    ]
Esempio n. 11
0
        def pi(state_target: StateTarget, level: int) -> VennSet[Target]:
            res = EmptySet()  # type: VennSet[Target]

            for r in (x for x in reaction_targets if x.produces(state_target)):
                rxn_term = ValueSet(r)  # type: VennSet[Target]
                for s in (x for x in state_targets if r.consumes(x)):
                    if r.degraded_targets:
                        state_term = ValueSet(s)  # type: VennSet[Target]
                    else:
                        state_term = Intersection(ValueSet(s),
                                                  degradation_factor(s))
                    for l in range(level):
                        state_term = Union(state_term, sigma(s, level - 1))
                    rxn_term = Intersection(rxn_term, state_term)
                res = Union(res, rxn_term)

            return res