Esempio n. 1
0
    def test_create_classes(self):
        """Test create_classes.
        """
        my_list = [0, 1, 4, 2, 9, 2, float('nan')]
        num_classes = 2
        my_expected = [4.5, 9]
        my_result = create_classes(my_list, num_classes)
        assert my_result == my_expected, ' %s is not same with %s' % (
            my_result, my_expected)

        my_list = [1, 4, 2, 9, 2, float('nan')]
        num_classes = 2
        my_expected = [1, 9]
        my_result = create_classes(my_list, num_classes)
        assert my_result == my_expected, ' %s is not same with %s' % (
            my_result, my_expected)
Esempio n. 2
0
    def test_create_classes(self):
        """Test create_classes.
        """
        my_list = [0, 1, 4, 2, 9, 2, float('nan')]
        num_classes = 2
        my_expected = [4.5, 9]
        my_result = create_classes(my_list, num_classes)
        assert my_result == my_expected, ' %s is not same with %s' % (
            my_result, my_expected)

        my_list = [1, 4, 2, 9, 2, float('nan')]
        num_classes = 2
        my_expected = [1, 9]
        my_result = create_classes(my_list, num_classes)
        assert my_result == my_expected, ' %s is not same with %s' % (
            my_result, my_expected)
Esempio n. 3
0
    def test_create_classes(self):
        """Test create_classes.
        """
        # Normal case
        class_list = [0, 1, 4, 2, 9, 2, float('nan')]
        num_classes = 2
        expected_classes = [1.0, 9.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # There's only 1 value
        class_list = [6]
        num_classes = 3
        expected_classes = [2.0, 4.0, 6.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # Max value <= 1.0
        class_list = [0.1, 0.3, 0.9]
        num_classes = 3
        expected_classes = [0.3, 0.6, 0.9]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # There are only 2 values
        class_list = [2, 6]
        num_classes = 3
        expected_classes = [1.0, 3.5, 6.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # Another 2 values
        class_list = [2.5, 6]
        num_classes = 3
        expected_classes = [2.0, 4.0, 6.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)
Esempio n. 4
0
    def test_create_classes(self):
        """Test create_classes.
        """
        # Normal case
        class_list = numpy.array([0, 1, 4, 2, 9, 2, float('nan')])
        num_classes = 2
        expected_classes = [1.0, 9.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # There's only 1 value
        class_list = numpy.array([6])
        num_classes = 3
        expected_classes = [2.0, 4.0, 6.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # Max value <= 1.0
        class_list = numpy.array([0.1, 0.3, 0.9])
        num_classes = 3
        expected_classes = [0.3, 0.6, 0.9]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # There are only 2 values
        class_list = numpy.array([2, 6])
        num_classes = 3
        expected_classes = [1.0, 3.5, 6.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)

        # Another 2 values
        class_list = numpy.array([2.5, 6])
        num_classes = 3
        expected_classes = [2.0, 4.0, 6.0]
        result = create_classes(class_list, num_classes)
        message = '%s is not same with %s' % (result, expected_classes)
        self.assertEqual(result, expected_classes, message)
Esempio n. 5
0
    def test_create_classes(self):
        """Test create_classes.
        """
        # Normal case
        class_list = numpy.array([0, 1, 4, 2, 9, 2, float('nan')])
        num_classes = 2
        expected_classes = [1.0, 9.0]
        result = create_classes(class_list, num_classes)
        self.assertEqual(result, expected_classes)

        # There's only 1 value
        class_list = numpy.array([6])
        num_classes = 3
        expected_classes = [2.0, 4.0, 6.0]
        result = create_classes(class_list, num_classes)
        self.assertEqual(result, expected_classes)

        # Max value <= 1.0
        class_list = numpy.array([0.1, 0.3, 0.9])
        num_classes = 3
        expected_classes = [0.3, 0.6, 0.9]
        result = create_classes(class_list, num_classes)
        self.assertEqual(result, expected_classes)

        # There are only 2 values
        class_list = numpy.array([2, 6])
        num_classes = 3
        expected_classes = [1.0, 3.5, 6.0]
        result = create_classes(class_list, num_classes)
        self.assertEqual(result, expected_classes)

        # Another 2 values
        class_list = numpy.array([2.5, 6])
        num_classes = 3
        expected_classes = [2.0, 4.0, 6.0]
        result = create_classes(class_list, num_classes)
        self.assertEqual(result, expected_classes)
Esempio n. 6
0
    def run(self):
        """Run the impact function.
        """
        # Range for ash hazard
        group_parameters = self.parameters['group_threshold']
        unaffected_max = group_parameters.value_map[
            'unaffected_threshold'].value
        very_low_max = group_parameters.value_map['very_low_threshold'].value
        low_max = group_parameters.value_map['low_threshold'].value
        medium_max = group_parameters.value_map['moderate_threshold'].value
        high_max = group_parameters.value_map['high_threshold'].value

        # Extract hazard data as numeric arrays
        ash = self.hazard.layer.get_data(nan=True)  # Thickness
        if has_no_data(ash):
            self.no_data_warning = True

        # Extract exposure data as numeric arrays
        population = self.exposure.layer.get_data(nan=True, scaling=True)
        if has_no_data(population):
            self.no_data_warning = True

        # Create 5 data for each hazard level. Get the value of the exposure
        # if the exposure is in the hazard zone, else just assign 0
        unaffected_exposure = numpy.where(ash < unaffected_max, population, 0)
        very_low_exposure = numpy.where(
            (ash >= unaffected_max) & (ash < very_low_max), population, 0)
        low_exposure = numpy.where(
            (ash >= very_low_max) & (ash < low_max), population, 0)
        medium_exposure = numpy.where(
            (ash >= low_max) & (ash < medium_max), population, 0)
        high_exposure = numpy.where(
            (ash >= medium_max) & (ash < high_max), population, 0)
        very_high_exposure = numpy.where(ash >= high_max, population, 0)

        impacted_exposure = (
            very_low_exposure +
            low_exposure +
            medium_exposure +
            high_exposure +
            very_high_exposure
        )

        # Count totals
        self.total_population = int(numpy.nansum(population))
        self.affected_population[
            tr('Population in very low hazard zone')] = int(
            numpy.nansum(very_low_exposure))
        self.affected_population[
            tr('Population in low hazard zone')] = int(
            numpy.nansum(low_exposure))
        self.affected_population[
            tr('Population in medium hazard zone')] = int(
            numpy.nansum(medium_exposure))
        self.affected_population[
            tr('Population in high hazard zone')] = int(
            numpy.nansum(high_exposure))
        self.affected_population[
            tr('Population in very high hazard zone')] = int(
            numpy.nansum(very_high_exposure))
        self.unaffected_population = int(
            numpy.nansum(unaffected_exposure))

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Don't show digits less than a 1000
        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
            ]
        total_needs = self.total_needs

        # Style for impact layer
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impacted_exposure.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            data=impacted_exposure,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 7
0
    def run(self):
        """Indonesian Earthquake Fatality Model."""
        displacement_rate = self.hardcoded_parameters['displacement_rate']
        fatality_rate = self.compute_fatality_rate()

        # Extract data grids
        hazard = self.hazard.layer.get_data()   # Ground Shaking
        # Population Density
        exposure = self.exposure.layer.get_data(scaling=True)

        # Calculate people affected by each MMI level
        mmi_range = self.hardcoded_parameters['mmi_range']
        number_of_exposed = {}
        number_of_displaced = {}
        number_of_fatalities = {}
        # Calculate fatality rates for observed Intensity values (hazard
        # based on ITB power model
        mask = numpy.zeros(hazard.shape)
        for mmi in mmi_range:
            # Identify cells where MMI is in class i and
            # count people affected by this shake level
            step = self.hardcoded_parameters['step']
            mmi_matches = numpy.where(
                (hazard > mmi - step) * (hazard <= mmi + step), exposure, 0)

            # Calculate expected number of fatalities per level
            exposed = numpy.nansum(mmi_matches)
            fatalities = fatality_rate[mmi] * exposed

            # Calculate expected number of displaced people per level
            displacements = displacement_rate[mmi] * (
                exposed - numpy.median(fatalities))

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            # displacements = numpy.where(
            #    displacements > fatalities, displacements - fatalities, 0)

            # Sum up numbers for map
            # We need to use matrices here and not just numbers #2235
            # filter out NaN to avoid overflow additions
            mmi_matches = numpy.nan_to_num(mmi_matches)
            mask += mmi_matches   # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = exposed
            number_of_displaced[mmi] = displacements
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = fatalities

        # Total statistics
        total_fatalities_raw = numpy.nansum(
            number_of_fatalities.values(), axis=0)

        # Compute probability of fatality in each magnitude bin
        if (self.__class__.__name__ == 'PAGFatalityFunction') or (
                self.__class__.__name__ == 'ITBBayesianFatalityFunction'):
            prob_fatality_mag = self.compute_probability(total_fatalities_raw)
        else:
            prob_fatality_mag = None

        # Compute number of fatalities
        self.total_population = numpy.nansum(number_of_exposed.values())
        self.total_fatalities = numpy.median(total_fatalities_raw)
        total_displaced = numpy.nansum(number_of_displaced.values())

        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        # Needs to revisit but keep it alive for the time being - Hyeuk, Jono
        if self.total_fatalities < 50:
            self.total_fatalities = 0

        affected_population = self.affected_population
        affected_population[tr('Number of fatalities')] = self.total_fatalities
        affected_population[
            tr('Number of people displaced')] = total_displaced
        self.unaffected_population = (
            self.total_population - total_displaced - self.total_fatalities)
        self._evacuation_category = tr('Number of people displaced')

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(mask.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(interval_classes)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 30
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'exposed_per_mmi': number_of_exposed,
            'total_population': self.total_population,
            'total_fatalities': population_rounding(self.total_fatalities),
            'total_fatalities_raw': self.total_fatalities,
            'fatalities_per_mmi': number_of_fatalities,
            'total_displaced': population_rounding(total_displaced),
            'displaced_per_mmi': number_of_displaced,
            'map_title': self.metadata().key('map_title'),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': total_needs,
            'prob_fatality_mag': prob_fatality_mag,
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            mask,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            keywords=impact_layer_keywords,
            name=self.metadata().key('layer_name'),
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 8
0
    def run(self):
        """Run classified population evacuation Impact Function.

        Counts number of people exposed to each hazard zones.

        :returns: Map of population exposed to each hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
        """
        self.validate()
        self.prepare()

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')

        # Input checks
        msg = ('Input hazard must be a polygon layer. I got %s with '
               'layer type %s' %
               (self.hazard.name, self.hazard.layer.get_geometry_name()))
        if not self.hazard.layer.is_polygon_data:
            raise Exception(msg)

        # Check if hazard_class_attribute exists in hazard_layer
        if (self.hazard_class_attribute
                not in self.hazard.layer.get_attribute_names()):
            msg = ('Hazard data %s does not contain expected hazard '
                   'zone attribute "%s". Please change it in the option. ' %
                   (self.hazard.name, self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Get unique hazard zones from the layer attribute
        self.hazard_zones = list(
            set(self.hazard.layer.get_data(self.hazard_class_attribute)))

        # Interpolated layer represents grid cell that lies in the polygon
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Initialise total population affected by each hazard zone
        for hazard_zone in self.hazard_zones:
            self.affected_population[hazard_zone] = 0

        # Count total affected population per hazard zone
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_zone = row[self.hazard_class_attribute]
                self.affected_population[hazard_zone] += population

        # Count total population from exposure layer
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))

        # Count total affected population
        total_affected_population = self.total_affected_population
        self.unaffected_population = (self.total_population -
                                      total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]

        # check for zero impact
        if total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        impact_table = impact_summary = self.html_report()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People impacted by each hazard zone')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People impacted by each hazard zone'),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'target_field': self.target_field,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title
            },
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 9
0
    def run(self):
        """Run volcano point population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """

        # Parameters
        radii = self.parameters['distances'].value

        # Get parameters from layer's keywords
        volcano_name_attribute = self.hazard.keyword('volcano_name_field')

        data_table = self.hazard.layer.get_data()

        # Get names of volcanoes considered
        if volcano_name_attribute in self.hazard.layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in data_table:
                volcano_name_list.append(row[volcano_name_attribute])

            volcano_names = ''
            for radius in volcano_name_list:
                volcano_names += '%s, ' % radius
            self.volcano_names = volcano_names[:-2]  # Strip trailing ', '

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Initialise affected population per categories
        for radius in radii:
            category = 'Radius %s km ' % format_int(radius)
            self.affected_population[category] = 0

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True
        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = 'Radius %s km ' % format_int(
                    row[self.hazard_zone_attribute])
                self.affected_population[category] += population

        # Count totals
        self.total_population = population_rounding(
            int(numpy.nansum(self.exposure.layer.get_data())))

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        impact_data = self.generate_data()

        # Create vector layer and return
        extra_keywords = {
            'target_field': self.target_field,
            'map_title': self.metadata().key('map_title'),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': self.total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=self.metadata().key('layer_name'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 10
0
    def run(self):
        """Plugin for impact of population as derived by classified hazard.

        Counts number of people exposed to each class of the hazard

        Return
          Map of population exposed to high class
          Table with number of people in each class
        """
        self.validate()
        self.prepare()

        # The 3 classes
        # TODO (3.2): shouldnt these be defined in keywords rather? TS
        categorical_hazards = self.parameters['Categorical hazards'].value
        low_class = categorical_hazards[0].value
        medium_class = categorical_hazards[1].value
        high_class = categorical_hazards[2].value

        # The classes must be different to each other
        unique_classes_flag = all(
            x != y for x, y in list(
                itertools.combinations(
                    [low_class, medium_class, high_class], 2)))
        if not unique_classes_flag:
            raise FunctionParametersError(
                'There is hazard class that has the same value with other '
                'class. Please check the parameters.')

        # Extract data as numeric arrays
        hazard_data = self.hazard.layer.get_data(nan=True)  # Class
        if has_no_data(hazard_data):
            self.no_data_warning = True

        # Calculate impact as population exposed to each class
        population = self.exposure.layer.get_data(scaling=True)

        # Get all population data that falls in each hazard class
        high_hazard_population = numpy.where(
            hazard_data == high_class, population, 0)
        medium_hazard_population = numpy.where(
            hazard_data == medium_class, population, 0)
        low_hazard_population = numpy.where(
            hazard_data == low_class, population, 0)
        affected_population = (
            high_hazard_population + medium_hazard_population +
            low_hazard_population)

        # Carry the no data values forward to the impact layer.
        affected_population = numpy.where(
            numpy.isnan(population),
            numpy.nan,
            affected_population)
        affected_population = numpy.where(
            numpy.isnan(hazard_data),
            numpy.nan,
            affected_population)

        # Count totals
        self.total_population = int(numpy.nansum(population))
        self.affected_population[
            tr('Population in High hazard class areas')] = int(
                numpy.nansum(high_hazard_population))
        self.affected_population[
            tr('Population in Medium hazard class areas')] = int(
                numpy.nansum(medium_hazard_population))
        self.affected_population[
            tr('Population in Low hazard class areas')] = int(
                numpy.nansum(low_hazard_population))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        total_needs = self.total_needs
        impact_table = impact_summary = self.html_report()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(affected_population.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Number of people affected in each class')
        legend_title = tr('Number of People')
        legend_units = tr('(people per cell)')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())

        # Create raster object and return
        raster_layer = Raster(
            data=affected_population,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            name=tr('People that might %s') % (
                self.impact_function_manager
                .get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs},
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer
Esempio n. 11
0
    def run(self):
        """Plugin for impact of population as derived by continuous hazard.

        Hazard is reclassified into 3 classes based on the extrema provided
        as impact function parameters.

        Counts number of people exposed to each category of the hazard

        :returns:
          Map of population exposed to high category
          Table with number of people in each category
        """

        thresholds = [
            p.value for p in self.parameters['Categorical thresholds'].value
        ]

        # Thresholds must contain 3 thresholds
        if len(thresholds) != 3:
            raise FunctionParametersError(
                'The thresholds must consist of 3 values.')

        # Thresholds must monotonically increasing
        monotonically_increasing_flag = all(
            x < y for x, y in zip(thresholds, thresholds[1:]))
        if not monotonically_increasing_flag:
            raise FunctionParametersError(
                'Each threshold should be larger than the previous.')

        # The 3 categories
        low_t = thresholds[0]
        medium_t = thresholds[1]
        high_t = thresholds[2]

        # Extract data as numeric arrays
        hazard_data = self.hazard.layer.get_data(nan=True)  # Category
        if has_no_data(hazard_data):
            self.no_data_warning = True

        # Calculate impact as population exposed to each category
        exposure_data = self.exposure.layer.get_data(nan=True, scaling=True)
        if has_no_data(exposure_data):
            self.no_data_warning = True

        # Make 3 data for each zone. Get the value of the exposure if the
        # exposure is in the hazard zone, else just assign 0
        low_exposure = numpy.where(hazard_data < low_t, exposure_data, 0)
        medium_exposure = numpy.where(
            (hazard_data >= low_t) & (hazard_data < medium_t), exposure_data,
            0)
        high_exposure = numpy.where(
            (hazard_data >= medium_t) & (hazard_data <= high_t), exposure_data,
            0)
        impacted_exposure = low_exposure + medium_exposure + high_exposure

        # Count totals
        self.total_population = int(numpy.nansum(exposure_data))
        self.affected_population[tr('Population in high hazard zones')] = int(
            numpy.nansum(high_exposure))
        self.affected_population[tr(
            'Population in medium hazard zones')] = int(
                numpy.nansum(medium_exposure))
        self.affected_population[tr('Population in low hazard zones')] = int(
            numpy.nansum(low_exposure))
        self.unaffected_population = (self.total_population -
                                      self.total_affected_population)

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Don't show digits less than a 1000
        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Style for impact layer
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impacted_exposure.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            data=impacted_exposure,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 12
0
class ITBFatalityFunction(FunctionProvider):
    """Indonesian Earthquake Fatality Model

    This model was developed by Institut Teknologi Bandung (ITB) and
    implemented by Dr. Hadi Ghasemi, Geoscience Australia.


    Reference:

    Indonesian Earthquake Building-Damage and Fatality Models and
    Post Disaster Survey Guidelines Development,
    Bali, 27-28 February 2012, 54pp.


    Algorithm:

    In this study, the same functional form as Allen (2009) is adopted
    to express fatality rate as a function of intensity (see Eq. 10 in the
    report). The Matlab built-in function (fminsearch) for  Nelder-Mead
    algorithm was used to estimate the model parameters. The objective
    function (L2G norm) that is minimised during the optimisation is the
    same as the one used by Jaiswal et al. (2010).

    The coefficients used in the indonesian model are
    x=0.62275231, y=8.03314466, zeta=2.15

    Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J.,
    Lin, K., and Hearne, M., 2009. An Atlas of ShakeMaps and population
    exposure catalog for earthquake loss modeling, Bull. Earthq. Eng. 7,
    701-718.

    Jaiswal, K., and Wald, D., 2010. An empirical model for global earthquake
    fatality estimation, Earthq. Spectra 26, 1017-1037.


    Caveats and limitations:

    The current model is the result of the above mentioned workshop and
    reflects the best available information. However, the current model
    has a number of issues listed below and is expected to evolve further
    over time.

    1 - The model is based on limited number of observed fatality
        rates during 4 past fatal events.
    2 - The model clearly over-predicts the fatality rates at
        intensities higher than VIII.
    3 - The model only estimates the expected fatality rate for a given
        intensity level; however the associated uncertainty for the proposed
        model is not addressed.
    4 - There are few known mistakes in developing the current model:
        - rounding MMI values to the nearest 0.5,
        - Implementing Finite-Fault models of candidate events, and
        - consistency between selected GMPEs with those in use by BMKG.
          These issues will be addressed by ITB team in the final report.

    Note: Because of these caveats, decisions should not be made solely on
    the information presented here and should always be verified by ground
    truthing and other reliable information sources.

    :author Hadi Ghasemi
    :rating 3

    :param requires category=='hazard' and \
                    subcategory=='earthquake' and \
                    layertype=='raster' and \
                    unit=='MMI'

    :param requires category=='exposure' and \
                    subcategory=='population' and \
                    layertype=='raster'

    """

    title = tr('Die or be displaced')
    synopsis = tr(
        'To asses the impact of earthquake on population based on earthquake '
        'model developed by ITB')
    citations = tr(
        ' * Indonesian Earthquake Building-Damage and Fatality Models and '
        '   Post Disaster Survey Guidelines Development Bali, 27-28 '
        '   February 2012, 54pp.\n'
        ' * Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., '
        '   Hotovec, A. J., Lin, K., and Hearne, M., 2009. An Atlas '
        '   of ShakeMaps and population exposure catalog for '
        '   earthquake loss modeling, Bull. Earthq. Eng. 7, 701-718.\n'
        ' * Jaiswal, K., and Wald, D., 2010. An empirical model for '
        '   global earthquake fatality estimation, Earthq. Spectra '
        '   26, 1017-1037.\n')
    limitation = tr(
        ' - The model is based on limited number of observed fatality '
        '   rates during 4 past fatal events. \n'
        ' - The model clearly over-predicts the fatality rates at '
        '   intensities higher than VIII.\n'
        ' - The model only estimates the expected fatality rate '
        '   for a given intensity level; however the associated '
        '   uncertainty for the proposed model is not addressed.\n'
        ' - There are few known mistakes in developing the current '
        '   model:\n\n'
        '   * rounding MMI values to the nearest 0.5,\n'
        '   * Implementing Finite-Fault models of candidate events, and\n'
        '   * consistency between selected GMPEs with those in use by '
        '     BMKG.\n')
    actions = tr(
        'Provide details about the population will be die or displaced')
    detailed_description = tr(
        'This model was developed by Institut Teknologi Bandung (ITB) '
        'and implemented by Dr. Hadi Ghasemi, Geoscience Australia\n'
        'Algorithm:\n'
        'In this study, the same functional form as Allen (2009) is '
        'adopted o express fatality rate as a function of intensity '
        '(see Eq. 10 in the report). The Matlab built-in function '
        '(fminsearch) for  Nelder-Mead algorithm was used to estimate '
        'the model parameters. The objective function (L2G norm) that '
        'is minimized during the optimisation is the same as the one '
        'used by Jaiswal et al. (2010).\n'
        'The coefficients used in the indonesian model are x=0.62275231, '
        'y=8.03314466, zeta=2.15')
    defaults = get_defaults()

    parameters = OrderedDict([
        ('x', 0.62275231),
        ('y', 8.03314466),  # Model coefficients
        # Rates of people displaced for each MMI level
        ('displacement_rate', {
            1: 0,
            2: 0,
            3: 0,
            4: 0,
            5: 0,
            6: 1.0,
            7: 1.0,
            8: 1.0,
            9: 1.0,
            10: 1.0
        }),
        ('mmi_range', range(2, 10)),
        ('step', 0.5),
        # Threshold below which layer should be transparent
        ('tolerance', 0.01),
        ('calculate_displaced_people', True),
        ('postprocessors',
         OrderedDict([
             ('Gender', {
                 'on': True
             }),
             ('Age', {
                 'on':
                 True,
                 'params':
                 OrderedDict([('youth_ratio', defaults['YOUTH_RATIO']),
                              ('adult_ratio', defaults['ADULT_RATIO']),
                              ('elder_ratio', defaults['ELDER_RATIO'])])
             }), ('MinimumNeeds', {
                 'on': True
             })
         ])),
        ('minimum needs', default_minimum_needs())
    ])

    def fatality_rate(self, mmi):
        """
        ITB method to compute fatality rate
        :param mmi:
        """
        # As per email discussion with Ole, Trevor, Hadi, mmi < 4 will have
        # a fatality rate of 0 - Tim
        if mmi < 4:
            return 0

        x = self.parameters['x']
        y = self.parameters['y']
        return numpy.power(10.0, x * mmi - y)

    def run(self, layers):
        """Indonesian Earthquake Fatality Model

        Input:

        :param layers: List of layers expected to contain,

                my_hazard: Raster layer of MMI ground shaking

                my_exposure: Raster layer of population density
        """

        displacement_rate = self.parameters['displacement_rate']

        # Tolerance for transparency
        tolerance = self.parameters['tolerance']

        # Extract input layers
        intensity = get_hazard_layer(layers)
        population = get_exposure_layer(layers)

        question = get_question(intensity.get_name(), population.get_name(),
                                self)

        # Extract data grids
        my_hazard = intensity.get_data()  # Ground Shaking
        my_exposure = population.get_data(scaling=True)  # Population Density

        # Calculate population affected by each MMI level
        # FIXME (Ole): this range is 2-9. Should 10 be included?

        mmi_range = self.parameters['mmi_range']
        number_of_exposed = {}
        number_of_displaced = {}
        number_of_fatalities = {}

        # Calculate fatality rates for observed Intensity values (my_hazard
        # based on ITB power model
        R = numpy.zeros(my_hazard.shape)
        for mmi in mmi_range:
            # Identify cells where MMI is in class i and
            # count population affected by this shake level
            I = numpy.where((my_hazard > mmi - self.parameters['step']) *
                            (my_hazard <= mmi + self.parameters['step']),
                            my_exposure, 0)

            # Calculate expected number of fatalities per level
            fatality_rate = self.fatality_rate(mmi)

            F = fatality_rate * I

            # Calculate expected number of displaced people per level
            try:
                D = displacement_rate[mmi] * I
            except KeyError, e:
                msg = 'mmi = %i, I = %s, Error msg: %s' % (mmi, str(I), str(e))
                # noinspection PyExceptionInherit
                raise InaSAFEError(msg)

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            D = numpy.where(D > F, D - F, 0)

            # Sum up numbers for map
            R += D  # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = numpy.nansum(I.flat)
            number_of_displaced[mmi] = numpy.nansum(D.flat)
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = numpy.nansum(F.flat)

        # Set resulting layer to NaN when less than a threshold. This is to
        # achieve transparency (see issue #126).
        R[R < tolerance] = numpy.nan

        # Total statistics
        total = int(round(numpy.nansum(my_exposure.flat) / 1000) * 1000)

        # Compute number of fatalities
        fatalities = int(
            round(numpy.nansum(number_of_fatalities.values()) / 1000)) * 1000
        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        if fatalities < 50:
            fatalities = 0

        # Compute number of people displaced due to building collapse
        displaced = int(
            round(numpy.nansum(number_of_displaced.values()) / 1000)) * 1000

        # Generate impact report
        table_body = [question]

        # Add total fatality estimate
        s = format_int(fatalities)
        table_body.append(
            TableRow([tr('Number of fatalities'), s], header=True))

        if self.parameters['calculate_displaced_people']:
            # Add total estimate of people displaced
            s = format_int(displaced)
            table_body.append(
                TableRow([tr('Number of people displaced'), s], header=True))
        else:
            displaced = 0

        # Add estimate of total population in area
        s = format_int(int(total))
        table_body.append(
            TableRow([tr('Total number of people'), s], header=True))

        # Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan
        # FIXME: Refactor and share
        minimum_needs = self.parameters['minimum needs']
        needs = evacuated_population_weekly_needs(displaced, minimum_needs)

        # Generate impact report for the pdf map
        table_body = [
            question,
            TableRow([tr('Fatalities'),
                      '%s' % format_int(fatalities)],
                     header=True),
            TableRow([tr('People displaced'),
                      '%s' % format_int(displaced)],
                     header=True),
            TableRow(
                tr('Map shows density estimate of '
                   'displaced population')),
            TableRow([tr('Needs per week'), tr('Total')], header=True),
            [tr('Rice [kg]'), format_int(needs['rice'])],
            [tr('Drinking Water [l]'),
             format_int(needs['drinking_water'])],
            [tr('Clean Water [l]'),
             format_int(needs['water'])],
            [tr('Family Kits'),
             format_int(needs['family_kits'])],
            TableRow(tr('Action Checklist:'), header=True)
        ]

        if fatalities > 0:
            table_body.append(
                tr('Are there enough victim identification '
                   'units available for %s people?') % format_int(fatalities))
        if displaced > 0:
            table_body.append(
                tr('Are there enough shelters and relief items '
                   'available for %s people?') % format_int(displaced))
            table_body.append(
                TableRow(
                    tr('If yes, where are they located and '
                       'how will we distribute them?')))
            table_body.append(
                TableRow(
                    tr('If no, where can we obtain '
                       'additional relief items from and '
                       'how will we transport them?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People are considered to be displaced if '
               'they experience and survive a shake level'
               'of more than 5 on the MMI scale '),
            tr('Minimum needs are defined in BNPB '
               'regulation 7/2008'),
            tr('The fatality calculation assumes that '
               'no fatalities occur for shake levels below 4 '
               'and fatality counts of less than 50 are '
               'disregarded.'),
            tr('All values are rounded up to the nearest '
               'integer in order to avoid representing human '
               'lives as fractionals.')
        ])

        table_body.append(TableRow(tr('Notes'), header=True))
        table_body.append(
            tr('Fatality model is from '
               'Institute of Teknologi Bandung 2012.'))
        table_body.append(tr('Population numbers rounded to nearest 1000.'))

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(R) == 0 == numpy.nanmin(R):
            table_body = [
                question,
                TableRow([tr('Fatalities'),
                          '%s' % format_int(fatalities)],
                         header=True)
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(R.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 30
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Earthquake impact to population')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population density')

        # Create raster object and return
        L = Raster(R,
                   projection=population.get_projection(),
                   geotransform=population.get_geotransform(),
                   keywords={
                       'impact_summary': impact_summary,
                       'total_population': total,
                       'total_fatalities': fatalities,
                       'fatalites_per_mmi': number_of_fatalities,
                       'exposed_per_mmi': number_of_exposed,
                       'displaced_per_mmi': number_of_displaced,
                       'impact_table': impact_table,
                       'map_title': map_title,
                       'legend_notes': legend_notes,
                       'legend_units': legend_units,
                       'legend_title': legend_title
                   },
                   name=tr('Estimated displaced population per cell'),
                   style_info=style_info)

        return L
    def run(self, layers):
        """Risk plugin for volcano population evacuation

        Input
          layers: List of layers expected to contain
              my_hazard: Vector polygon layer of volcano impact zones
              my_exposure: Raster layer of population data on the same grid as
              my_hazard

        Counts number of people exposed to volcano event.

        Return
          Map of population exposed to the volcano hazard zone.
          Table with number of people evacuated and supplies required.
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Volcano KRB
        my_exposure = get_exposure_layer(layers)

        question = get_question(
            my_hazard.get_name(), my_exposure.get_name(), self)

        # Input checks
        if not my_hazard.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected '
                   % my_hazard.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon or point layer. I got %s with '
               'layer type %s' % (my_hazard.get_name(),
                                  my_hazard.get_geometry_name()))
        if not (my_hazard.is_polygon_data or my_hazard.is_point_data):
            raise Exception(msg)

        if my_hazard.is_point_data:
            # Use concentric circles
            radii = self.parameters['distance [km]']

            centers = my_hazard.get_geometry()
            attributes = my_hazard.get_data()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            my_hazard = make_circular_polygon(
                centers, rad_m, attributes=attributes)

            category_title = 'Radius'
            category_header = tr('Distance [km]')
            category_names = radii

            name_attribute = 'NAME'  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = 'KRB'
            category_header = tr('Category')

            # FIXME (Ole): Change to English and use translation system
            category_names = ['Kawasan Rawan Bencana III',
                              'Kawasan Rawan Bencana II',
                              'Kawasan Rawan Bencana I']

            name_attribute = 'GUNUNG'  # As in e.g. BNPB hazard map
            attributes = my_hazard.get_data()

        # Get names of volcanos considered
        if name_attribute in my_hazard.get_attribute_names():
            D = {}
            for att in my_hazard.get_data():
                # Run through all polygons and get unique names
                D[att[name_attribute]] = None

            volcano_names = ''
            for name in D:
                volcano_names += '%s, ' % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        if not category_title in my_hazard.get_attribute_names():
            msg = ('Hazard data %s did not contain expected '
                   'attribute %s ' % (my_hazard.get_name(), category_title))
            raise InaSAFEError(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(
            my_hazard, my_exposure, attribute_name='population')

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a population count of zero
        new_attributes = my_hazard.get_data()

        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            cat = attr[category_title]
            categories[cat] = 0

        # Count affected population per polygon and total
        evacuated = 0
        for attr in P.get_data():
            # Get population at this location
            pop = float(attr['population'])

            # Update population count for associated polygon
            poly_id = attr['polygon_id']
            new_attributes[poly_id][self.target_field] += pop

            # Update population count for each category
            cat = new_attributes[poly_id][category_title]
            categories[cat] += pop

        # Count totals
        total = int(numpy.sum(my_exposure.get_data(nan=0)))

        # Don't show digits less than a 1000
        total = round_thousand(total)

        # Count number and cumulative for each zone
        cum = 0
        pops = {}
        cums = {}
        for name in category_names:
            if category_title == 'Radius':
                key = name * 1000  # Convert to meters
            else:
                key = name
            # prevent key error
            pop = int(categories.get(key, 0))

            pop = round_thousand(pop)

            cum += pop
            cum = round_thousand(cum)

            pops[name] = pop
            cums[name] = cum

        # Use final accumulation as total number needing evac
        evacuated = cum

        # Calculate estimated needs based on BNPB Perka
        # 7/2008 minimum bantuan
        # FIXME (Ole): Refactor into one function to be shared
        rice = int(evacuated * 2.8)
        drinking_water = int(evacuated * 17.5)
        water = int(evacuated * 67)
        family_kits = int(evacuated / 5)
        toilets = int(evacuated / 20)

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [question,
                      TableRow([tr('Volcanos considered'),
                                '%s' % volcano_names, blank_cell],
                               header=True),
                      TableRow([tr('People needing evacuation'),
                                '%s' % format_int(evacuated),
                                blank_cell],
                               header=True),
                      TableRow([category_header,
                                tr('Total'), tr('Cumulative')],
                               header=True)]

        for name in category_names:
            table_body.append(TableRow([name,
                                        format_int(pops[name]),
                                        format_int(cums[name])]))

        table_body.extend([TableRow(tr('Map shows population affected in '
                                       'each of volcano hazard polygons.')),
                           TableRow([tr('Needs per week'), tr('Total'),
                                     blank_cell],
                                    header=True),
                           [tr('Rice [kg]'), format_int(rice), blank_cell],
                           [tr('Drinking Water [l]'),
                            format_int(drinking_water), blank_cell],
                           [tr('Clean Water [l]'), format_int(water),
                            blank_cell],
                           [tr('Family Kits'), format_int(family_kits),
                            blank_cell],
                           [tr('Toilets'), format_int(toilets),
                            blank_cell]])
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total population %s in the exposure layer')
                           % format_int(total),
                           tr('People need evacuation if they are within the '
                              'volcanic hazard zones.')])
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        population_counts = [x[self.target_field] for x in new_attributes]
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 30
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people)')
        legend_title = tr('Population count')

        # Create vector layer and return
        V = Vector(data=new_attributes,
                   projection=my_hazard.get_projection(),
                   geometry=my_hazard.get_geometry(as_geometry_objects=True),
                   name=tr('Population affected by volcanic hazard zone'),
                   keywords={'impact_summary': impact_summary,
                             'impact_table': impact_table,
                             'target_field': self.target_field,
                             'map_title': map_title,
                             'legend_notes': legend_notes,
                             'legend_units': legend_units,
                             'legend_title': legend_title},
                   style_info=style_info)
        return V
    def run(self, layers):
        """Risk plugin for flood population evacuation.

        :param layers: List of layers expected to contain

            * hazard_layer : Vector polygon layer of flood depth
            * exposure_layer : Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to areas identified as flood prone

        :returns: Map of population exposed to flooding Table with number of
            people evacuated and supplies required.
        :rtype: tuple
        """
        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Flood inundation
        exposure_layer = get_exposure_layer(layers)

        question = get_question(
            hazard_layer.get_name(), exposure_layer.get_name(), self)

        # Check that hazard is polygon type
        if not hazard_layer.is_vector:
            message = (
                'Input hazard %s  was not a vector layer as expected ' %
                hazard_layer.get_name())
            raise Exception(message)

        message = (
            'Input hazard must be a polygon layer. I got %s with layer type '
            '%s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
        if not hazard_layer.is_polygon_data:
            raise Exception(message)

        # Run interpolation function for polygon2raster
        combined = assign_hazard_values_to_exposure_data(
            hazard_layer, exposure_layer, attribute_name='population')

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a population count of zero
        new_attributes = hazard_layer.get_data()
        category_title = 'affected'  # FIXME: Should come from keywords
        deprecated_category_title = 'FLOODPRONE'
        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            try:
                title = attr[category_title]
            except KeyError:
                try:
                    title = attr['FLOODPRONE']
                    categories[title] = 0
                except KeyError:
                    pass

        # Count affected population per polygon, per category and total
        affected_population = 0
        for attr in combined.get_data():

            affected = False
            if 'affected' in attr:
                res = attr['affected']
                if res is None:
                    x = False
                else:
                    x = bool(res)
                affected = x
            elif 'FLOODPRONE' in attr:
                # If there isn't an 'affected' attribute,
                res = attr['FLOODPRONE']
                if res is not None:
                    affected = res.lower() == 'yes'
            elif 'Affected' in attr:
                # Check the default attribute assigned for points
                # covered by a polygon
                res = attr['Affected']
                if res is None:
                    x = False
                else:
                    x = res
                affected = x
            else:
                # assume that every polygon is affected (see #816)
                affected = True
                # there is no flood related attribute
                # message = ('No flood related attribute found in %s. '
                #       'I was looking for either "Flooded", "FLOODPRONE" '
                #       'or "Affected". The latter should have been '
                #       'automatically set by call to '
                #       'assign_hazard_values_to_exposure_data(). '
                #       'Sorry I can\'t help more.')
                # raise Exception(message)

            if affected:
                # Get population at this location
                pop = float(attr['population'])

                # Update population count for associated polygon
                poly_id = attr['polygon_id']
                new_attributes[poly_id][self.target_field] += pop

                # Update population count for each category
                if len(categories) > 0:
                    try:
                        title = new_attributes[poly_id][category_title]
                    except KeyError:
                        title = new_attributes[poly_id][
                            deprecated_category_title]
                    categories[title] += pop

                # Update total
                affected_population += pop

        # Estimate number of people in need of evacuation
        evacuated = (
            affected_population *
            self.parameters['evacuation_percentage'] /
            100.0)

        affected_population, rounding = population_rounding_full(
            affected_population)

        total = int(numpy.sum(exposure_layer.get_data(nan=0, scaling=False)))

        # Don't show digits less than a 1000
        total = population_rounding(total)
        evacuated, rounding_evacuated = population_rounding_full(evacuated)

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        table_body = [
            question,
            TableRow(
                [tr('People affected'), '%s*' % (
                    format_int(int(affected_population)))],
                header=True),
            TableRow(
                [TableCell(
                    tr('* Number is rounded up to the nearest %s') % (
                        rounding),
                    col_span=2)]),
            TableRow([tr('People needing evacuation'), '%s*' % (
                format_int(int(evacuated)))], header=True),
            TableRow(
                [TableCell(
                    tr('* Number is rounded up to the nearest %s') % (
                        rounding_evacuated),
                    col_span=2)]),
            TableRow([tr('Evacuation threshold'), '%s%%' % format_int(
                self.parameters['evacuation_percentage'])], header=True),
            TableRow(tr(
                'Map shows the number of people affected in each flood prone '
                'area')),
            TableRow(tr(
                'Table below shows the weekly minimum needs for all '
                'evacuated people'))]
        total_needs = evacuated_population_needs(
            evacuated, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(TableRow(
                [
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                header=True))
            for resource in needs:
                table_body.append(TableRow([
                    tr(resource['table name']),
                    format_int(resource['amount'])]))

        impact_table = Table(table_body).toNewlineFreeString()

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(TableRow(
            'If yes, where are they located and how will we distribute '
            'them?'))
        table_body.append(TableRow(
            'If no, where can we obtain additional relief items from and '
            'how will we transport them to here?'))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if in the area identified as '
               '"Flood Prone"'),
            tr('Minimum needs are defined in BNPB regulation 7/2008')])
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        # Define classes for legend for flooded population counts
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']

        population_counts = [x['population'] for x in new_attributes]
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)

        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 0
                style_class['min'] = 0
            else:
                transparency = 0
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people per polygon)')
        legend_title = tr('Population Count')

        # Create vector layer and return
        vector_layer = Vector(
            data=new_attributes,
            projection=hazard_layer.get_projection(),
            geometry=hazard_layer.get_geometry(),
            name=tr('People affected by flood prone areas'),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'target_field': self.target_field,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'affected_population': affected_population,
                'total_population': total,
                'total_needs': total_needs},
            style_info=style_info)
        return vector_layer
Esempio n. 15
0
    def run(self):
        """Run volcano point population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """

        # Parameters
        radii = self.parameters['distances'].value

        # Get parameters from layer's keywords
        volcano_name_attribute = self.hazard.keyword('volcano_name_field')

        data_table = self.hazard.layer.get_data()

        # Get names of volcanoes considered
        if volcano_name_attribute in self.hazard.layer.get_attribute_names():
            # Run through all polygons and get unique names
            for row in data_table:
                self.volcano_names.add(row[volcano_name_attribute])

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Initialise affected population per categories
        impact_category_ordering = []
        for radius in radii:
            category = tr('Radius %s km ' % format_int(radius))
            self.affected_population[category] = 0
            impact_category_ordering.append(category)

        self.impact_category_ordering = impact_category_ordering

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True
        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = tr('Radius %s km ' %
                              format_int(row[self.hazard_zone_attribute]))
                self.affected_population[category] += population

        # Count totals
        self.total_population = population_rounding(
            int(numpy.nansum(self.exposure.layer.get_data())))

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        # Create vector layer and return
        extra_keywords = {
            'target_field': self.target_field,
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': self.total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 16
0
    def run(self):
        """Risk plugin for tsunami population evacuation.

        Counts number of people exposed to tsunami levels exceeding
        specified threshold.

        :returns: Map of population exposed to tsunami levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds'].value

        verify(isinstance(thresholds, list),
               'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        data = self.hazard.layer.get_data(nan=True)  # Depth
        if has_no_data(data):
            self.no_data_warning = True

        # Calculate impact as population exposed to depths > max threshold
        population = self.exposure.layer.get_data(nan=True, scaling=True)
        if has_no_data(population):
            self.no_data_warning = True

        # merely initialize
        impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                thresholds_name = tr('People in >= %.1f m of water') % lo
                impact = medium = numpy.where(data >= lo, population, 0)
                self.impact_category_ordering.append(thresholds_name)
                self._evacuation_category = thresholds_name
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                thresholds_name = tr('People in %.1f m to %.1f m of water' %
                                     (lo, hi))
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.nansum(medium))
            self.affected_population[thresholds_name] = val

        # Put the deepest area in top #2385
        self.impact_category_ordering.reverse()

        # Carry the no data values forward to the impact layer.
        impact = numpy.where(numpy.isnan(population), numpy.nan, impact)
        impact = numpy.where(numpy.isnan(data), numpy.nan, impact)

        # Count totals
        self.total_population = int(numpy.nansum(population))
        self.unaffected_population = (self.total_population -
                                      self.total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            message = m.Message()
            message.add(self.question)
            message.add(tr('No people in %.1f m of water') % thresholds[-1])
            message = message.to_html(suppress_newlines=True)
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'evacuated': self.total_evacuated,
            'total_needs': self.total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            impact,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 17
0
    def run(self, layers=None):
        """Run volcano point population evacuation Impact Function.

        :param layers: List of layers expected to contain where two layers
            should be present.

            * hazard_layer: Vector point layer.
            * exposure_layer: Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """
        self.validate()
        self.prepare(layers)

        # Parameters
        radii = self.parameters['distance [km]']
        name_attribute = self.parameters['volcano name attribute']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Input checks
        if not hazard_layer.is_point_data:
            msg = (
                'Input hazard must be a polygon or point layer. I got %s with '
                'layer type %s' %
                (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
            raise Exception(msg)

        data_table = hazard_layer.get_data()

        # Use concentric circles
        category_title = 'Radius'
        category_header = tr('Distance [km]')

        centers = hazard_layer.get_geometry()
        rad_m = [x * 1000 for x in radii]  # Convert to meters
        hazard_layer = buffer_points(centers,
                                     rad_m,
                                     category_title,
                                     data_table=data_table)

        # Get names of volcanoes considered
        if name_attribute in hazard_layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in data_table:
                volcano_name_list.append(row[name_attribute])

            volcano_names = ''
            for radius in volcano_name_list:
                volcano_names += '%s, ' % radius
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        # Find the target field name that has no conflict with default target
        attribute_names = hazard_layer.get_attribute_names()
        new_target_field = get_non_conflicting_attribute_name(
            self.target_field, attribute_names)
        self.target_field = new_target_field

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                exposure_layer,
                attribute_name=self.target_field
            )

        # Initialise affected population per categories
        affected_population = {}
        for radius in rad_m:
            affected_population[radius] = 0

        nan_warning = False
        if has_no_data(exposure_layer.get_data(nan=True)):
            nan_warning = True
        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = row[category_title]
                affected_population[category] += population

        # Count totals
        total_population = population_rounding(
            int(numpy.nansum(exposure_layer.get_data())))

        # Count cumulative for each zone
        total_affected_population = 0
        cumulative_affected_population = {}
        for radius in rad_m:
            population = int(affected_population.get(radius, 0))
            total_affected_population += population
            cumulative_affected_population[radius] = total_affected_population

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [
            self.question,
            TableRow(
                [tr('Volcanoes considered'),
                 '%s' % volcano_names, blank_cell],
                header=True),
            TableRow([
                tr('People needing evacuation'),
                '%s' %
                format_int(population_rounding(total_affected_population)),
                blank_cell
            ],
                     header=True),
            TableRow(
                [category_header,
                 tr('Total'), tr('Cumulative')], header=True)
        ]

        for radius in rad_m:
            table_body.append(
                TableRow([
                    radius,
                    format_int(population_rounding(
                        affected_population[radius])),
                    format_int(
                        population_rounding(
                            cumulative_affected_population[radius]))
                ]))

        table_body.extend([
            TableRow(
                tr('Map shows the number of people affected in each of volcano '
                   'hazard polygons.'))
        ])

        total_needs = evacuated_population_needs(total_affected_population,
                                                 minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(
                TableRow([
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                         header=True))
            for resource in needs:
                table_body.append(
                    TableRow([
                        tr(resource['table name']),
                        format_int(resource['amount'])
                    ]))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population %s in the exposure layer') %
            format_int(total_population),
            tr('People need evacuation if they are within the '
               'volcanic hazard zones.')
        ])

        if nan_warning:
            table_body.extend([
                tr('The population layer contained `no data`. This missing '
                   'data was carried through to the impact layer.'),
                tr('`No data` values in the impact layer were treated as 0 '
                   'when counting the affected or total population.')
            ])

        impact_summary = Table(table_body).toNewlineFreeString()

        # check for zero impact
        if total_affected_population == 0:
            table_body = [
                self.question,
                TableRow([
                    tr('People needing evacuation'),
                    '%s' % format_int(total_affected_population), blank_cell
                ],
                         header=True)
            ]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by the buffered point volcano')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People affected by the buffered point volcano'),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'target_field': self.target_field,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs
            },
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 18
0
    def run(self, layers=None):
        """Run classified population evacuation Impact Function.

        :param layers: List of layers expected to contain where two layers
            should be present.

            * hazard_layer: Vector polygon layer
            * exposure_layer: Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to each hazard zones.

        :returns: Map of population exposed to each hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
        """
        self.validate()
        self.prepare(layers)

        # Parameters
        hazard_zone_attribute = self.parameters['hazard zone attribute']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Input checks
        if not hazard_layer.is_polygon_data:
            msg = ('Input hazard must be a polygon layer. I got %s with '
                   'layer type %s' %
                   (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
            raise Exception(msg)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute not in hazard_layer.get_attribute_names():
            msg = ('Hazard data %s does not contain expected hazard '
                   'zone attribute "%s". Please change it in the option. ' %
                   (hazard_layer.get_name(), hazard_zone_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Get unique hazard zones from the layer attribute
        self.hazard_zones = list(
            set(hazard_layer.get_data(hazard_zone_attribute)))

        # Find the target field name that has no conflict with default target
        attribute_names = hazard_layer.get_attribute_names()
        new_target_field = get_non_conflicting_attribute_name(
            self.target_field, attribute_names)
        self.target_field = new_target_field

        # Interpolated layer represents grid cell that lies in the polygon
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                exposure_layer,
                attribute_name=self.target_field
            )

        # Initialise total population affected by each hazard zone
        affected_population = {}
        for hazard_zone in self.hazard_zones:
            affected_population[hazard_zone] = 0

        # Count total affected population per hazard zone
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_zone = row[hazard_zone_attribute]
                affected_population[hazard_zone] += population

        # Count total population from exposure layer
        total_population = population_rounding(
            int(numpy.nansum(exposure_layer.get_data())))

        # Count total affected population
        total_affected_population = reduce(
            lambda x, y: x + y,
            [population for population in affected_population.values()])

        # check for zero impact
        if total_affected_population == 0:
            table_body = [
                self.question,
                TableRow([
                    tr('People impacted'),
                    '%s' % format_int(total_affected_population)
                ],
                         header=True)
            ]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [
            self.question,
            TableRow([
                tr('People impacted'),
                '%s' %
                format_int(population_rounding(total_affected_population)),
                blank_cell
            ],
                     header=True)
        ]

        for hazard_zone in self.hazard_zones:
            table_body.append(
                TableRow([
                    hazard_zone,
                    format_int(
                        population_rounding(affected_population[hazard_zone]))
                ]))

        table_body.extend([
            TableRow(
                tr('Map shows the number of people impacted in each of the '
                   'hazard zones.'))
        ])

        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s in the exposure layer') %
            format_int(total_population),
            tr('"nodata" values in the exposure layer are treated as 0 '
               'when counting the affected or total population')
        ])

        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People impacted by each hazard zone')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People impacted by each hazard zone'),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'target_field': self.target_field,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title
            },
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 19
0
    def run(self):
        """Risk plugin for flood population evacuation.

        Counts number of people exposed to areas identified as flood prone

        :returns: Map of population exposed to flooding Table with number of
            people evacuated and supplies required.
        :rtype: tuple
        """
        self.validate()
        self.prepare()

        self.provenance.append_step(
            'Calculating Step',
            'Impact function is calculating the impact.')

        # Get parameters from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')

        # Get the IF parameters
        self._evacuation_percentage = (
            self.parameters['evacuation_percentage'].value)

        # Check that hazard is polygon type
        if not self.hazard.layer.is_polygon_data:
            message = (
                'Input hazard must be a polygon layer. I got %s with layer '
                'type %s' % (
                    self.hazard.name,
                    self.hazard.layer.get_geometry_name()))
            raise Exception(message)

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True

        # Check that affected field exists in hazard layer
        if (self.hazard_class_attribute in
                self.hazard.layer.get_attribute_names()):
            self.use_affected_field = True

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field)

        # Data for manipulating the covered_exposure layer
        new_covered_exposure_data = covered_exposure.get_data()
        covered_exposure_top_left = numpy.array([
            covered_exposure.get_geotransform()[0],
            covered_exposure.get_geotransform()[3]])
        covered_exposure_dimension = numpy.array([
            covered_exposure.get_geotransform()[1],
            covered_exposure.get_geotransform()[5]])

        # Count affected population per polygon, per category and total
        total_affected_population = 0
        for attr in interpolated_layer.get_data():
            affected = False
            if self.use_affected_field:
                row_affected_value = attr[self.hazard_class_attribute]
                if row_affected_value is not None:
                    affected = get_key_for_value(
                        row_affected_value, self.hazard_class_mapping)
            else:
                # assume that every polygon is affected (see #816)
                affected = self.wet

            if affected == self.wet:
                # Get population at this location
                population = attr[self.target_field]
                if not numpy.isnan(population):
                    population = float(population)
                    total_affected_population += population
            else:
                # If it's not affected, set the value of the impact layer to 0
                grid_point = attr['grid_point']
                index = numpy.floor(
                    (grid_point - covered_exposure_top_left) / (
                        covered_exposure_dimension)).astype(int)
                new_covered_exposure_data[index[1]][index[0]] = 0

        # Estimate number of people in need of evacuation
        if self.use_affected_field:
            affected_population = tr(
                'People within hazard field ("%s") of value "%s"') % (
                    self.hazard_class_attribute,
                    ','.join([
                        unicode(hazard_class) for
                        hazard_class in self.hazard_class_mapping[self.wet]
                    ]))
        else:
            affected_population = tr('People within any hazard polygon.')

        self.affected_population[affected_population] = (
            total_affected_population)

        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data(scaling=False)))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        impact_table = impact_summary = self.html_report()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            new_covered_exposure_data.flat[:], len(colours))

        # check for zero impact
        if total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_title = tr('Population Count')
        legend_units = tr('(people per polygon)')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'target_field': self.target_field,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title,
            'affected_population': total_affected_population,
            'total_population': self.total_population,
            'total_needs': self.total_needs
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Raster(
            data=new_covered_exposure_data,
            projection=covered_exposure.get_projection(),
            geotransform=covered_exposure.get_geotransform(),
            name=tr('People affected by flood prone areas'),
            keywords=impact_layer_keywords,
            style_info=style_info)
        self._impact = impact_layer
        return impact_layer
Esempio n. 20
0
    def run(self, layers=None):
        """Run volcano point population evacuation Impact Function.

        :param layers: List of layers expected to contain where two layers
            should be present.

            * hazard_layer: Vector point layer.
            * exposure_layer: Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """
        self.validate()
        self.prepare(layers)

        # Parameters
        radii = self.parameters['distance [km]']
        name_attribute = self.parameters['volcano name attribute']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Input checks
        if not hazard_layer.is_point_data:
            msg = (
                'Input hazard must be a polygon or point layer. I got %s with '
                'layer type %s' % (hazard_layer.get_name(),
                                   hazard_layer.get_geometry_name()))
            raise Exception(msg)

        data_table = hazard_layer.get_data()

        # Use concentric circles
        category_title = 'Radius'
        category_header = tr('Distance [km]')

        centers = hazard_layer.get_geometry()
        rad_m = [x * 1000 for x in radii]  # Convert to meters
        hazard_layer = buffer_points(
            centers, rad_m, category_title, data_table=data_table)

        # Get names of volcanoes considered
        if name_attribute in hazard_layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in data_table:
                volcano_name_list.append(row[name_attribute])

            volcano_names = ''
            for radius in volcano_name_list:
                volcano_names += '%s, ' % radius
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        # Find the target field name that has no conflict with default target
        attribute_names = hazard_layer.get_attribute_names()
        new_target_field = get_non_conflicting_attribute_name(
            self.target_field, attribute_names)
        self.target_field = new_target_field

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                exposure_layer,
                attribute_name=self.target_field
            )

        # Initialise affected population per categories
        affected_population = {}
        for radius in rad_m:
            affected_population[radius] = 0

        nan_warning = False
        if has_no_data(exposure_layer.get_data(nan=True)):
            nan_warning = True
        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = row[category_title]
                affected_population[category] += population

        # Count totals
        total_population = population_rounding(
            int(numpy.nansum(exposure_layer.get_data())))

        # Count cumulative for each zone
        total_affected_population = 0
        cumulative_affected_population = {}
        for radius in rad_m:
            population = int(affected_population.get(radius, 0))
            total_affected_population += population
            cumulative_affected_population[radius] = total_affected_population

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [
            self.question,
            TableRow(
                [tr('Volcanoes considered'),
                 '%s' % volcano_names,
                 blank_cell],
                header=True),
            TableRow(
                [tr('People needing evacuation'),
                 '%s' % format_int(
                     population_rounding(total_affected_population)),
                 blank_cell],
                header=True),
            TableRow(
                [category_header,
                 tr('Total'),
                 tr('Cumulative')],
                header=True)]

        for radius in rad_m:
            table_body.append(
                TableRow(
                    [radius,
                     format_int(
                         population_rounding(
                             affected_population[radius])),
                     format_int(
                         population_rounding(
                             cumulative_affected_population[radius]))]))

        table_body.extend([
            TableRow(tr(
                'Map shows the number of people affected in each of volcano '
                'hazard polygons.'))])

        total_needs = evacuated_population_needs(
            total_affected_population, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(TableRow(
                [
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                header=True))
            for resource in needs:
                table_body.append(TableRow([
                    tr(resource['table name']),
                    format_int(resource['amount'])]))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend(
            [TableRow(tr('Notes'), header=True),
             tr('Total population %s in the exposure layer') % format_int(
                 total_population),
             tr('People need evacuation if they are within the '
                'volcanic hazard zones.')])

        if nan_warning:
            table_body.extend([
                tr('The population layer contained `no data`. This missing '
                   'data was carried through to the impact layer.'),
                tr('`No data` values in the impact layer were treated as 0 '
                   'when counting the affected or total population.')
            ])

        impact_summary = Table(table_body).toNewlineFreeString()

        # check for zero impact
        if total_affected_population == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People needing evacuation'),
                     '%s' % format_int(total_affected_population),
                     blank_cell],
                    header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by the buffered point volcano')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People affected by the buffered point volcano'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title,
                      'total_needs': total_needs},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 21
0
    def run(self):
        """Risk plugin for flood population evacuation.

        Counts number of people exposed to flood levels exceeding
        specified threshold.

        :returns: Map of population exposed to flood levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds'].value

        verify(
            isinstance(thresholds, list),
            'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays

        data = self.hazard.layer.get_data(nan=True)  # Depth
        if has_no_data(data):
            self.no_data_warning = True

        # Calculate impact as population exposed to depths > max threshold
        population = self.exposure.layer.get_data(nan=True, scaling=True)
        total = int(numpy.nansum(population))
        if has_no_data(population):
            self.no_data_warning = True

        # merely initialize
        impact = None

        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                thresholds_name = tr(
                    'People in >= %.1f m of water') % lo
                self.impact_category_ordering.append(thresholds_name)
                self._evacuation_category = thresholds_name
                impact = medium = numpy.where(data >= lo, population, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                thresholds_name = tr(
                    'People in %.1f m to %.1f m of water' % (lo, hi))
                self.impact_category_ordering.append(thresholds_name)
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.nansum(medium))
            self.affected_population[thresholds_name] = val

        # Put the deepest area in top #2385
        self.impact_category_ordering.reverse()

        self.total_population = total
        self.unaffected_population = total - self.total_affected_population

        # Carry the no data values forward to the impact layer.
        impact = numpy.where(numpy.isnan(population), numpy.nan, impact)
        impact = numpy.where(numpy.isnan(data), numpy.nan, impact)

        # Count totals
        evacuated = self.total_evacuated

        self.minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        total_needs = self.total_needs

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'map_title': self.metadata().key('map_title'),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'evacuated': evacuated,
            'total_needs': total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            impact,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=self.metadata().key('layer_name'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 22
0
    def run(self):
        """Run volcano population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """
        self.validate()
        self.prepare()

        # Parameters
        self.hazard_class_attribute = self.hazard.keyword('field')
        name_attribute = self.hazard.keyword('volcano_name_field')

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True

        # Input checks
        if not self.hazard.layer.is_polygon_data:
            msg = ('Input hazard must be a polygon layer. I got %s with '
                   'layer type %s' % (self.hazard.layer.get_name(),
                                      self.hazard.layer.get_geometry_name()))
            raise Exception(msg)

        # Check if hazard_class_attribute exists in hazard_layer
        if (self.hazard_class_attribute not in
                self.hazard.layer.get_attribute_names()):
            msg = ('Hazard data %s did not contain expected attribute %s ' % (
                self.hazard.layer.get_name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        features = self.hazard.layer.get_data()
        hazard_zone_categories = list(
            set(self.hazard.layer.get_data(self.hazard_class_attribute)))

        # Get names of volcanoes considered
        if name_attribute in self.hazard.layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in features:
                volcano_name_list.append(row[name_attribute])

            self.volcano_names = ', '.join(set(volcano_name_list))

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field)

        # Initialise total affected per category
        for hazard_zone in hazard_zone_categories:
            self.affected_population[hazard_zone] = 0

        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = row[self.hazard_class_attribute]
                self.affected_population[category] += population

        # Count totals
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        impact_table = impact_summary = self.html_report()

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by Volcano Hazard Zones')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr(
            'Thousand separator is represented by  %s' %
            get_thousand_separator())

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People affected by volcano hazard zones'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title,
                      'total_needs': self.total_needs},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
    def run(self, layers):
        """Risk plugin for volcano population evacuation

        :param layers: List of layers expected to contain where two layers
            should be present.

            * my_hazard: Vector polygon layer of volcano impact zones
            * my_exposure: Raster layer of population data on the same grid as
              my_hazard

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Volcano KRB
        my_exposure = get_exposure_layer(layers)

        question = get_question(my_hazard.get_name(), my_exposure.get_name(),
                                self)

        # Input checks
        if not my_hazard.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected ' %
                   my_hazard.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon or point layer. I got %s with '
               'layer type %s' %
               (my_hazard.get_name(), my_hazard.get_geometry_name()))
        if not (my_hazard.is_polygon_data or my_hazard.is_point_data):
            raise Exception(msg)

        if my_hazard.is_point_data:
            # Use concentric circles
            radii = self.parameters['distance [km]']

            centers = my_hazard.get_geometry()
            attributes = my_hazard.get_data()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            my_hazard = make_circular_polygon(centers,
                                              rad_m,
                                              attributes=attributes)

            category_title = 'Radius'
            category_header = tr('Distance [km]')
            category_names = radii

            name_attribute = 'NAME'  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = 'KRB'
            category_header = tr('Category')

            # FIXME (Ole): Change to English and use translation system
            category_names = [
                'Kawasan Rawan Bencana III', 'Kawasan Rawan Bencana II',
                'Kawasan Rawan Bencana I'
            ]

            name_attribute = 'GUNUNG'  # As in e.g. BNPB hazard map
            attributes = my_hazard.get_data()

        # Get names of volcanos considered
        if name_attribute in my_hazard.get_attribute_names():
            D = {}
            for att in my_hazard.get_data():
                # Run through all polygons and get unique names
                D[att[name_attribute]] = None

            volcano_names = ''
            for name in D:
                volcano_names += '%s, ' % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        if not category_title in my_hazard.get_attribute_names():
            msg = ('Hazard data %s did not contain expected '
                   'attribute %s ' % (my_hazard.get_name(), category_title))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(my_hazard,
                                                  my_exposure,
                                                  attribute_name='population')

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a population count of zero
        new_attributes = my_hazard.get_data()

        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            cat = attr[category_title]
            categories[cat] = 0

        # Count affected population per polygon and total
        evacuated = 0
        for attr in P.get_data():
            # Get population at this location
            pop = float(attr['population'])

            # Update population count for associated polygon
            poly_id = attr['polygon_id']
            new_attributes[poly_id][self.target_field] += pop

            # Update population count for each category
            cat = new_attributes[poly_id][category_title]
            categories[cat] += pop

        # Count totals
        total = int(numpy.sum(my_exposure.get_data(nan=0)))

        # Don't show digits less than a 1000
        total = round_thousand(total)

        # Count number and cumulative for each zone
        cum = 0
        pops = {}
        cums = {}
        for name in category_names:
            if category_title == 'Radius':
                key = name * 1000  # Convert to meters
            else:
                key = name
            # prevent key error
            pop = int(categories.get(key, 0))

            pop = round_thousand(pop)

            cum += pop
            cum = round_thousand(cum)

            pops[name] = pop
            cums[name] = cum

        # Use final accumulation as total number needing evac
        evacuated = cum

        tot_needs = evacuated_population_weekly_needs(evacuated)

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [
            question,
            TableRow(
                [tr('Volcanos considered'),
                 '%s' % volcano_names, blank_cell],
                header=True),
            TableRow([
                tr('People needing evacuation'),
                '%s' % format_int(evacuated), blank_cell
            ],
                     header=True),
            TableRow(
                [category_header,
                 tr('Total'), tr('Cumulative')], header=True)
        ]

        for name in category_names:
            table_body.append(
                TableRow(
                    [name,
                     format_int(pops[name]),
                     format_int(cums[name])]))

        table_body.extend([
            TableRow(
                tr('Map shows population affected in '
                   'each of volcano hazard polygons.')),
            TableRow([tr('Needs per week'),
                      tr('Total'), blank_cell],
                     header=True),
            [tr('Rice [kg]'),
             format_int(tot_needs['rice']), blank_cell],
            [
                tr('Drinking Water [l]'),
                format_int(tot_needs['drinking_water']), blank_cell
            ],
            [
                tr('Clean Water [l]'),
                format_int(tot_needs['water']), blank_cell
            ],
            [
                tr('Family Kits'),
                format_int(tot_needs['family_kits']), blank_cell
            ], [tr('Toilets'),
                format_int(tot_needs['toilets']), blank_cell]
        ])
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population %s in the exposure layer') %
            format_int(total),
            tr('People need evacuation if they are within the '
               'volcanic hazard zones.')
        ])

        population_counts = [x[self.target_field] for x in new_attributes]
        impact_summary = Table(table_body).toNewlineFreeString()

        # check for zero impact
        if numpy.nanmax(population_counts) == 0 == numpy.nanmin(
                population_counts):
            table_body = [
                question,
                TableRow([
                    tr('People needing evacuation'),
                    '%s' % format_int(evacuated), blank_cell
                ],
                         header=True)
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 30
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people)')
        legend_title = tr('Population count')

        # Create vector layer and return
        V = Vector(data=new_attributes,
                   projection=my_hazard.get_projection(),
                   geometry=my_hazard.get_geometry(as_geometry_objects=True),
                   name=tr('Population affected by volcanic hazard zone'),
                   keywords={
                       'impact_summary': impact_summary,
                       'impact_table': impact_table,
                       'target_field': self.target_field,
                       'map_title': map_title,
                       'legend_notes': legend_notes,
                       'legend_units': legend_units,
                       'legend_title': legend_title
                   },
                   style_info=style_info)
        return V
Esempio n. 24
0
    def run(self):
        """Risk plugin for tsunami population evacuation.

        Counts number of people exposed to tsunami levels exceeding
        specified threshold.

        :returns: Map of population exposed to tsunami levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """
        self.validate()
        self.prepare()

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds'].value

        verify(
            isinstance(thresholds, list),
            'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        data = self.hazard.layer.get_data(nan=True)  # Depth
        if has_no_data(data):
            self.no_data_warning = True

        # Calculate impact as population exposed to depths > max threshold
        population = self.exposure.layer.get_data(nan=True, scaling=True)
        if has_no_data(population):
            self.no_data_warning = True

        # merely initialize
        impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                thresholds_name = tr(
                    'People in >= %.1f m of water') % lo
                impact = medium = numpy.where(data >= lo, population, 0)
                self.impact_category_ordering.append(thresholds_name)
                self._evacuation_category = thresholds_name
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                thresholds_name = tr(
                    'People in %.1f m to %.1f m of water' % (lo, hi))
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.nansum(medium))
            self.affected_population[thresholds_name] = val

        # Carry the no data values forward to the impact layer.
        impact = numpy.where(numpy.isnan(population), numpy.nan, impact)
        impact = numpy.where(numpy.isnan(data), numpy.nan, impact)

        # Count totals
        self.total_population = int(numpy.nansum(population))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        impact_table = impact_summary = self.html_report()

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            message = m.Message()
            message.add(self.question)
            message.add(tr('No people in %.1f m of water') % thresholds[-1])
            message = message.to_html(suppress_newlines=True)
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())

        # Create raster object and return
        raster = Raster(
            impact,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=tr('Population which %s') % (
                self.impact_function_manager.get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'evacuated': self.total_evacuated,
                'total_needs': self.total_needs},
            style_info=style_info)
        self._impact = raster
        return raster
Esempio n. 25
0
    def run(self, layers=None):
        """Risk plugin for flood population evacuation.

        :param layers: List of layers expected to contain

            * hazard_layer : Vector polygon layer of flood depth
            * exposure_layer : Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to areas identified as flood prone

        :returns: Map of population exposed to flooding Table with number of
            people evacuated and supplies required.
        :rtype: tuple
        """
        self.validate()
        self.prepare(layers)

        # Get the IF parameters
        affected_field = self.parameters['affected_field']
        affected_value = self.parameters['affected_value']
        evacuation_percentage = self.parameters['evacuation_percentage']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Check that hazard is polygon type
        if not hazard_layer.is_polygon_data:
            message = (
                'Input hazard must be a polygon layer. I got %s with layer '
                'type %s' %
                (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
            raise Exception(message)

        nan_warning = False
        if has_no_data(exposure_layer.get_data(nan=True)):
            nan_warning = True

        # Check that affected field exists in hazard layer
        if affected_field in hazard_layer.get_attribute_names():
            self.use_affected_field = True

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                exposure_layer,
                attribute_name=self.target_field)

        # Data for manipulating the covered_exposure layer
        new_covered_exposure_data = covered_exposure.get_data()
        covered_exposure_top_left = numpy.array([
            covered_exposure.get_geotransform()[0],
            covered_exposure.get_geotransform()[3]
        ])
        covered_exposure_dimension = numpy.array([
            covered_exposure.get_geotransform()[1],
            covered_exposure.get_geotransform()[5]
        ])

        # Count affected population per polygon, per category and total
        total_affected_population = 0
        for attr in interpolated_layer.get_data():
            affected = False
            if self.use_affected_field:
                row_affected_value = attr[affected_field]
                if row_affected_value is not None:
                    if isinstance(row_affected_value, Number):
                        type_func = type(row_affected_value)
                        affected = row_affected_value == type_func(
                            affected_value)
                    else:
                        affected =\
                            get_unicode(affected_value).lower() == \
                            get_unicode(row_affected_value).lower()
            else:
                # assume that every polygon is affected (see #816)
                affected = True

            if affected:
                # Get population at this location
                population = attr[self.target_field]
                if not numpy.isnan(population):
                    population = float(population)
                    total_affected_population += population
            else:
                # If it's not affected, set the value of the impact layer to 0
                grid_point = attr['grid_point']
                index = numpy.floor((grid_point - covered_exposure_top_left) /
                                    (covered_exposure_dimension)).astype(int)
                new_covered_exposure_data[index[1]][index[0]] = 0

        # Estimate number of people in need of evacuation
        evacuated = (total_affected_population * evacuation_percentage / 100.0)

        total_population = int(
            numpy.nansum(exposure_layer.get_data(scaling=False)))

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Rounding
        total_affected_population, rounding = population_rounding_full(
            total_affected_population)
        total_population = population_rounding(total_population)
        evacuated, rounding_evacuated = population_rounding_full(evacuated)

        # Generate impact report for the pdf map
        table_body, total_needs = self._tabulate(total_affected_population,
                                                 evacuated, minimum_needs,
                                                 self.question, rounding,
                                                 rounding_evacuated)

        impact_table = Table(table_body).toNewlineFreeString()

        self._tabulate_action_checklist(table_body, total_population,
                                        nan_warning)
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(new_covered_exposure_data.flat[:],
                                 len(colours))

        # check for zero impact
        if min(classes) == 0 == max(classes):
            table_body = [
                self.question,
                TableRow([
                    tr('People affected'),
                    '%s' % format_int(total_affected_population)
                ],
                         header=True)
            ]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people per polygon)')
        legend_title = tr('Population Count')

        # Create vector layer and return
        impact_layer = Raster(data=new_covered_exposure_data,
                              projection=covered_exposure.get_projection(),
                              geotransform=covered_exposure.get_geotransform(),
                              name=tr('People affected by flood prone areas'),
                              keywords={
                                  'impact_summary': impact_summary,
                                  'impact_table': impact_table,
                                  'target_field': self.target_field,
                                  'map_title': map_title,
                                  'legend_notes': legend_notes,
                                  'legend_units': legend_units,
                                  'legend_title': legend_title,
                                  'affected_population':
                                  total_affected_population,
                                  'total_population': total_population,
                                  'total_needs': total_needs
                              },
                              style_info=style_info)
        self._impact = impact_layer
        return impact_layer
    def run(self, layers):
        """Risk plugin for flood population evacuation

        Input
          layers: List of layers expected to contain
              my_hazard: Raster layer of flood depth
              my_exposure: Raster layer of population data on the same grid
              as my_hazard

        Counts number of people exposed to flood levels exceeding
        specified threshold.

        Return
          Map of population exposed to flood levels exceeding the threshold
          Table with number of people evacuated and supplies required
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Flood inundation [m]
        my_exposure = get_exposure_layer(layers)

        question = get_question(my_hazard.get_name(),
                                my_exposure.get_name(),
                                self)

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds [m]']

        verify(isinstance(thresholds, list),
               'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        D = my_hazard.get_data(nan=0.0)  # Depth

        # Calculate impact as population exposed to depths > max threshold
        P = my_exposure.get_data(nan=0.0, scaling=True)

        # Calculate impact to intermediate thresholds
        counts = []
        # merely initialize
        my_impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                my_impact = M = numpy.where(D >= lo, P, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                M = numpy.where((D >= lo) * (D < hi), P, 0)

            # Count
            val = int(numpy.sum(M))

            # Don't show digits less than a 1000
            val = round_thousand(val)
            counts.append(val)

        # Count totals
        evacuated = counts[-1]
        total = int(numpy.sum(P))
        # Don't show digits less than a 1000
        total = round_thousand(total)

        # Calculate estimated minimum needs
        # The default value of each logistic is based on BNPB Perka 7/2008
        # minimum bantuan
        minimum_needs = self.parameters['minimum needs']

        tot_needs = evacuated_population_weekly_needs(evacuated, minimum_needs)

        # Generate impact report for the pdf map
        # noinspection PyListCreation
        table_body = [
            question,
            TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                      '%s%s' % (format_int(evacuated), (
                          '*' if evacuated >= 1000 else ''))],
                     header=True),
            TableRow(tr('* Number is rounded to the nearest 1000'),
                     header=False),
            TableRow(tr('Map shows population density needing evacuation')),
            TableRow(tr('Table below shows the weekly minium needs for all '
                        'evacuated people')),
            TableRow([tr('Needs per week'), tr('Total')], header=True),
            [tr('Rice [kg]'), format_int(tot_needs['rice'])],
            [tr('Drinking Water [l]'),
             format_int(tot_needs['drinking_water'])],
            [tr('Clean Water [l]'), format_int(tot_needs['water'])],
            [tr('Family Kits'), format_int(tot_needs['family_kits'])],
            [tr('Toilets'), format_int(tot_needs['toilets'])]]

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(TableRow(tr('If yes, where are they located and how '
                                      'will we distribute them?')))
        table_body.append(TableRow(tr(
            'If no, where can we obtain additional relief items from and how '
            'will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if flood levels exceed %(eps).1f m') %
            {'eps': thresholds[-1]},
            tr('Minimum needs are defined in BNPB regulation 7/2008'),
            tr('All values are rounded up to the nearest integer in order to '
               'avoid representing human lives as fractionals.')])

        if len(counts) > 1:
            table_body.append(TableRow(tr('Detailed breakdown'), header=True))

            for i, val in enumerate(counts[:-1]):
                s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i')
                     % {'lo': thresholds[i],
                        'hi': thresholds[i + 1],
                        'val': format_int(val)})
                table_body.append(TableRow(s, header=False))

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(my_impact) == 0 == numpy.nanmin(my_impact):
            table_body = [
                question,
                TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                          '%s' % format_int(evacuated)],
                         header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(my_impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population density')

        # Create raster object and return
        R = Raster(my_impact,
                   projection=my_hazard.get_projection(),
                   geotransform=my_hazard.get_geotransform(),
                   name=tr('Population which %s') % (
                       get_function_title(self).lower()),
                   keywords={'impact_summary': impact_summary,
                             'impact_table': impact_table,
                             'map_title': map_title,
                             'legend_notes': legend_notes,
                             'legend_units': legend_units,
                             'legend_title': legend_title},
                   style_info=style_info)
        return R
Esempio n. 27
0
    def run(self):
        """Indonesian Earthquake Fatality Model."""
        self.validate()
        self.prepare()

        displacement_rate = self.hardcoded_parameters['displacement_rate']

        # Extract data grids
        hazard = self.hazard.layer.get_data()   # Ground Shaking
        # Population Density
        exposure = self.exposure.layer.get_data(scaling=True)

        # Calculate people affected by each MMI level
        # FIXME (Ole): this range is 2-9. Should 10 be included?
        mmi_range = self.hardcoded_parameters['mmi_range']
        number_of_exposed = {}
        number_of_displaced = {}
        number_of_fatalities = {}

        # Calculate fatality rates for observed Intensity values (hazard
        # based on ITB power model
        mask = numpy.zeros(hazard.shape)
        for mmi in mmi_range:
            # Identify cells where MMI is in class i and
            # count people affected by this shake level
            step = self.hardcoded_parameters['step']
            mmi_matches = numpy.where(
                (hazard > mmi - step) * (
                    hazard <= mmi + step),
                exposure, 0)

            # Calculate expected number of fatalities per level
            exposed = numpy.nansum(mmi_matches)
            fatalities = self.fatality_rate(mmi) * exposed

            # Calculate expected number of displaced people per level
            displacements = displacement_rate[mmi] * (exposed - fatalities)

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            # displacements = numpy.where(
            #    displacements > fatalities, displacements - fatalities, 0)

            # Sum up numbers for map
            # We need to use matrices here and not just numbers #2235
            mask += mmi_matches * (1 - self.fatality_rate(mmi))   # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = exposed
            number_of_displaced[mmi] = displacements
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = fatalities

        # Total statistics
        self.total_population = numpy.nansum(number_of_exposed.values())
        self.total_fatalities = numpy.nansum(number_of_fatalities.values())
        total_displaced = numpy.nansum(number_of_displaced.values())

        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        # Needs to revisit but keep it alive for the time being - Hyeuk, Jono
        if self.total_fatalities < 50:
            self.total_fatalities = 0

        affected_population = self.affected_population
        affected_population[tr('Number of fatalities')] = self.total_fatalities
        affected_population[
            tr('Number of people displaced')] = total_displaced
        self.unaffected_population = (
            self.total_population - total_displaced - self.total_fatalities)
        self._evacuation_category = tr('Number of people displaced')

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Result
        impact_summary = self.generate_html_report()
        impact_table = impact_summary

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(mask.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(interval_classes)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 30
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Earthquake impact to population')
        legend_title = tr('Population Count')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        # Create raster object and return
        raster = Raster(
            mask,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            keywords={
                'impact_summary': impact_summary,
                'exposed_per_mmi': number_of_exposed,
                'total_population': self.total_population,
                'total_fatalities': population_rounding(self.total_fatalities),
                'total_fatalities_raw': self.total_fatalities,
                'fatalities_per_mmi': number_of_fatalities,
                'total_displaced': population_rounding(total_displaced),
                'displaced_per_mmi': number_of_displaced,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs},
            name=tr('Estimated displaced population per cell'),
            style_info=style_info)
        self._impact = raster
        return raster
Esempio n. 28
0
    def run(self):
        """Run classified population evacuation Impact Function.

        Counts number of people exposed to each hazard zones.

        :returns: Map of population exposed to each hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
        """
        self.validate()
        self.prepare()

        self.provenance.append_step("Calculating Step", "Impact function is calculating the impact.")

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword("field")
        self.hazard_class_mapping = self.hazard.keyword("value_map")
        # TODO: Remove check to self.validate (Ismail)
        # Input checks
        message = tr(
            "Input hazard must be a polygon layer. I got %s with layer type "
            "%s" % (self.hazard.name, self.hazard.layer.get_geometry_name())
        )
        if not self.hazard.layer.is_polygon_data:
            raise Exception(message)

        # Check if hazard_class_attribute exists in hazard_layer
        if self.hazard_class_attribute not in self.hazard.layer.get_attribute_names():
            message = (
                "Hazard data %s does not contain expected hazard "
                'zone attribute "%s". Please change it in the option. '
                % (self.hazard.name, self.hazard_class_attribute)
            )
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword("vector_hazard_classification")
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification["classes"]
        # Initialize OrderedDict of affected buildings
        self.affected_population = OrderedDict()
        # Iterate over vector hazard classes
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class["key"] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class["name"]] = self.hazard_class_mapping.pop(
                    vector_hazard_class["key"]
                )
                # Adding the class name as a key in affected_building
                self.affected_population[vector_hazard_class["name"]] = 0

        # Interpolated layer represents grid cell that lies in the polygon
        interpolated_layer, covered_exposure_layer = assign_hazard_values_to_exposure_data(
            self.hazard.layer, self.exposure.layer, attribute_name=self.target_field
        )

        # Count total affected population per hazard zone
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_value = get_key_for_value(row[self.hazard_class_attribute], self.hazard_class_mapping)
                if not hazard_value:
                    hazard_value = self._not_affected_value
                self.affected_population[hazard_value] += population

        # Count total population from exposure layer
        self.total_population = int(numpy.nansum(self.exposure.layer.get_data()))

        # Count total affected population
        total_affected_population = self.total_affected_population
        self.unaffected_population = self.total_population - total_affected_population

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(self.parameters["minimum needs"])
        ]

        # check for zero impact
        if total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        impact_table = impact_summary = self.html_report()

        # Create style
        colours = ["#FFFFFF", "#38A800", "#79C900", "#CEED00", "#FFCC00", "#FF6600", "#FF0000", "#7A0000"]
        classes = create_classes(covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class["label"] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(interval_classes[i], tr("Low Population [%i people/cell]" % classes[i]))
            elif i == 4:
                label = create_label(interval_classes[i], tr("Medium Population [%i people/cell]" % classes[i]))
            elif i == 7:
                label = create_label(interval_classes[i], tr("High Population [%i people/cell]" % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class["label"] = label
            style_class["quantity"] = classes[i]
            style_class["colour"] = colours[i]
            style_class["transparency"] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None, style_classes=style_classes, style_type="rasterStyle")

        # For printing map purpose
        map_title = tr("People impacted by each hazard zone")
        legend_title = tr("Population")
        legend_units = tr("(people per cell)")
        legend_notes = tr("Thousand separator is represented by  %s" % get_thousand_separator())

        extra_keywords = {
            "impact_summary": impact_summary,
            "impact_table": impact_table,
            "target_field": self.target_field,
            "map_title": map_title,
            "legend_notes": legend_notes,
            "legend_units": legend_units,
            "legend_title": legend_title,
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr("People impacted by each hazard zone"),
            keywords=impact_layer_keywords,
            style_info=style_info,
        )

        self._impact = impact_layer
        return impact_layer
Esempio n. 29
0
    def run(self):
        """Indonesian Earthquake Fatality Model."""
        displacement_rate = self.hardcoded_parameters['displacement_rate']
        fatality_rate = self.compute_fatality_rate()

        # Extract data grids
        hazard = self.hazard.layer.get_data()  # Ground Shaking
        # Population Density
        exposure = self.exposure.layer.get_data(scaling=True)

        # Calculate people affected by each MMI level
        mmi_range = self.hardcoded_parameters['mmi_range']
        number_of_exposed = {}
        number_of_displaced = {}
        number_of_fatalities = {}
        # Calculate fatality rates for observed Intensity values (hazard
        # based on ITB power model
        mask = numpy.zeros(hazard.shape)
        for mmi in mmi_range:
            # Identify cells where MMI is in class i and
            # count people affected by this shake level
            step = self.hardcoded_parameters['step']
            mmi_matches = numpy.where(
                (hazard > mmi - step) * (hazard <= mmi + step), exposure, 0)

            # Calculate expected number of fatalities per level
            exposed = numpy.nansum(mmi_matches)
            fatalities = fatality_rate[mmi] * exposed

            # Calculate expected number of displaced people per level
            displacements = displacement_rate[mmi] * (exposed -
                                                      numpy.median(fatalities))

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            # displacements = numpy.where(
            #    displacements > fatalities, displacements - fatalities, 0)

            # Sum up numbers for map
            # We need to use matrices here and not just numbers #2235
            # filter out NaN to avoid overflow additions
            mmi_matches = numpy.nan_to_num(mmi_matches)
            mask += mmi_matches  # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = exposed
            number_of_displaced[mmi] = displacements
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = fatalities

        # Total statistics
        total_fatalities_raw = numpy.nansum(number_of_fatalities.values(),
                                            axis=0)

        # Compute probability of fatality in each magnitude bin
        if (self.__class__.__name__ == 'PAGFatalityFunction') or (
                self.__class__.__name__ == 'ITBBayesianFatalityFunction'):
            prob_fatality_mag = self.compute_probability(total_fatalities_raw)
        else:
            prob_fatality_mag = None

        # Compute number of fatalities
        self.total_population = numpy.nansum(number_of_exposed.values())
        self.total_fatalities = numpy.median(total_fatalities_raw)
        total_displaced = numpy.nansum(number_of_displaced.values())

        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        # Needs to revisit but keep it alive for the time being - Hyeuk, Jono
        if self.total_fatalities < 50:
            self.total_fatalities = 0

        affected_population = self.affected_population
        affected_population[tr('Number of fatalities')] = self.total_fatalities
        affected_population[tr('Number of people displaced')] = total_displaced
        self.unaffected_population = (self.total_population - total_displaced -
                                      self.total_fatalities)
        self._evacuation_category = tr('Number of people displaced')

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(mask.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(interval_classes)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 30
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'exposed_per_mmi': number_of_exposed,
            'total_population': self.total_population,
            'total_fatalities': population_rounding(self.total_fatalities),
            'total_fatalities_raw': self.total_fatalities,
            'fatalities_per_mmi': number_of_fatalities,
            'total_displaced': population_rounding(total_displaced),
            'displaced_per_mmi': number_of_displaced,
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': total_needs,
            'prob_fatality_mag': prob_fatality_mag,
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            mask,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            keywords=impact_layer_keywords,
            name=self.map_title(),
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 30
0
    def run(self, layers=None):
        """Plugin for impact of population as derived by classified hazard.

        Input
        :param layers: List of layers expected to contain

              * hazard_layer: Raster layer of classified hazard
              * exposure_layer: Raster layer of population data

        Counts number of people exposed to each class of the hazard

        Return
          Map of population exposed to high class
          Table with number of people in each class
        """
        self.validate()
        self.prepare(layers)

        # The 3 classes
        # TODO (3.2): shouldnt these be defined in keywords rather? TS
        low_class = self.parameters['low_hazard_class']
        medium_class = self.parameters['medium_hazard_class']
        high_class = self.parameters['high_hazard_class']

        # The classes must be different to each other
        unique_classes_flag = all(x != y for x, y in list(
            itertools.combinations([low_class, medium_class, high_class], 2)))
        if not unique_classes_flag:
            raise FunctionParametersError(
                'There is hazard class that has the same value with other '
                'class. Please check the parameters.')

        # Identify hazard and exposure layers
        hazard_layer = self.hazard  # Classified Hazard
        exposure_layer = self.exposure  # Population Raster

        # Extract data as numeric arrays
        hazard_data = hazard_layer.get_data(nan=True)  # Class
        no_data_warning = False
        if has_no_data(hazard_data):
            no_data_warning = True

        # Calculate impact as population exposed to each class
        population = exposure_layer.get_data(scaling=True)

        # Get all population data that falls in each hazard class
        high_hazard_population = numpy.where(hazard_data == high_class,
                                             population, 0)
        medium_hazard_population = numpy.where(hazard_data == medium_class,
                                               population, 0)
        low_hazard_population = numpy.where(hazard_data == low_class,
                                            population, 0)
        affected_population = (high_hazard_population +
                               medium_hazard_population +
                               low_hazard_population)

        # Carry the no data values forward to the impact layer.
        affected_population = numpy.where(numpy.isnan(population), numpy.nan,
                                          affected_population)
        affected_population = numpy.where(numpy.isnan(hazard_data), numpy.nan,
                                          affected_population)

        # Count totals
        total_population = int(numpy.nansum(population))
        total_high_population = int(numpy.nansum(high_hazard_population))
        total_medium_population = int(numpy.nansum(medium_hazard_population))
        total_low_population = int(numpy.nansum(low_hazard_population))
        total_affected = int(numpy.nansum(affected_population))
        total_not_affected = total_population - total_affected

        # check for zero impact
        if total_affected == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People affected'),
                     '%s' % format_int(total_affected)],
                    header=True)
            ]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        table_body, total_needs = self._tabulate(
            population_rounding(total_high_population),
            population_rounding(total_low_population),
            population_rounding(total_medium_population), minimum_needs,
            population_rounding(total_not_affected), self.question,
            population_rounding(total_affected))

        impact_table = Table(table_body).toNewlineFreeString()

        table_body = self._tabulate_action_checklist(
            table_body, population_rounding(total_population), no_data_warning)
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(affected_population.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Population affected by each class')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Number of People')

        # Create raster object and return
        raster_layer = Raster(
            data=affected_population,
            projection=exposure_layer.get_projection(),
            geotransform=exposure_layer.get_geotransform(),
            name=tr('Population which %s') %
            (self.impact_function_manager.get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs
            },
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer
Esempio n. 31
0
    def run(self):
        """Indonesian Earthquake Fatality Model."""
        self.validate()
        self.prepare()

        displacement_rate = self.hardcoded_parameters['displacement_rate']

        # Extract data grids
        hazard = self.hazard.layer.get_data()  # Ground Shaking
        # Population Density
        exposure = self.exposure.layer.get_data(scaling=True)

        # Calculate people affected by each MMI level
        # FIXME (Ole): this range is 2-9. Should 10 be included?
        mmi_range = self.hardcoded_parameters['mmi_range']
        number_of_exposed = {}
        number_of_displaced = {}
        number_of_fatalities = {}

        # Calculate fatality rates for observed Intensity values (hazard
        # based on ITB power model
        mask = numpy.zeros(hazard.shape)
        for mmi in mmi_range:
            # Identify cells where MMI is in class i and
            # count people affected by this shake level
            step = self.hardcoded_parameters['step']
            mmi_matches = numpy.where(
                (hazard > mmi - step) * (hazard <= mmi + step), exposure, 0)

            # Calculate expected number of fatalities per level
            exposed = numpy.nansum(mmi_matches)
            fatalities = self.fatality_rate(mmi) * exposed

            # Calculate expected number of displaced people per level
            displacements = displacement_rate[mmi] * (exposed - fatalities)

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            # displacements = numpy.where(
            #    displacements > fatalities, displacements - fatalities, 0)

            # Sum up numbers for map
            # We need to use matrices here and not just numbers #2235
            mask += mmi_matches * (1 - self.fatality_rate(mmi))  # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = exposed
            number_of_displaced[mmi] = displacements
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = fatalities

        # Total statistics
        self.total_population = numpy.nansum(number_of_exposed.values())
        self.total_fatalities = numpy.nansum(number_of_fatalities.values())
        total_displaced = numpy.nansum(number_of_displaced.values())

        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        # Needs to revisit but keep it alive for the time being - Hyeuk, Jono
        if self.total_fatalities < 50:
            self.total_fatalities = 0

        affected_population = self.affected_population
        affected_population[tr('Number of fatalities')] = self.total_fatalities
        affected_population[tr('Number of people displaced')] = total_displaced
        self.unaffected_population = (self.total_population - total_displaced -
                                      self.total_fatalities)
        self._evacuation_category = tr('Number of people displaced')

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Result
        impact_summary = self.html_report()
        impact_table = impact_summary

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(mask.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(interval_classes)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 30
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Earthquake impact to population')
        legend_title = tr('Population Count')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        # Create raster object and return
        raster = Raster(mask,
                        projection=self.exposure.layer.get_projection(),
                        geotransform=self.exposure.layer.get_geotransform(),
                        keywords={
                            'impact_summary':
                            impact_summary,
                            'exposed_per_mmi':
                            number_of_exposed,
                            'total_population':
                            self.total_population,
                            'total_fatalities':
                            population_rounding(self.total_fatalities),
                            'total_fatalities_raw':
                            self.total_fatalities,
                            'fatalities_per_mmi':
                            number_of_fatalities,
                            'total_displaced':
                            population_rounding(total_displaced),
                            'displaced_per_mmi':
                            number_of_displaced,
                            'impact_table':
                            impact_table,
                            'map_title':
                            map_title,
                            'legend_notes':
                            legend_notes,
                            'legend_units':
                            legend_units,
                            'legend_title':
                            legend_title,
                            'total_needs':
                            total_needs
                        },
                        name=tr('Estimated displaced population per cell'),
                        style_info=style_info)
        self._impact = raster
        return raster
Esempio n. 32
0
    def run(self):
        """Run volcano point population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """
        self.validate()
        self.prepare()

        # Parameters
        radii = self.parameters['distances'].value

        # Get parameters from layer's keywords
        volcano_name_attribute = self.hazard.keyword('volcano_name_field')

        # Input checks
        if not self.hazard.layer.is_point_data:
            msg = (
                'Input hazard must be a polygon or point layer. I got %s with '
                'layer type %s' % (
                    self.hazard.name, self.hazard.layer.get_geometry_name()))
            raise Exception(msg)

        data_table = self.hazard.layer.get_data()

        # Use concentric circles
        category_title = 'Radius'

        centers = self.hazard.layer.get_geometry()
        rad_m = [x * 1000 for x in radii]  # Convert to meters
        hazard_layer = buffer_points(
            centers, rad_m, category_title, data_table=data_table)

        # Get names of volcanoes considered
        if volcano_name_attribute in hazard_layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in data_table:
                volcano_name_list.append(row[volcano_name_attribute])

            volcano_names = ''
            for radius in volcano_name_list:
                volcano_names += '%s, ' % radius
            self.volcano_names = volcano_names[:-2]  # Strip trailing ', '

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Initialise affected population per categories
        for radius in rad_m:
            category = 'Distance %s km ' % format_int(radius)
            self.affected_population[category] = 0

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True
        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = 'Distance %s km ' % format_int(
                    row[category_title])
                self.affected_population[category] += population

        # Count totals
        self.total_population = population_rounding(
            int(numpy.nansum(self.exposure.layer.get_data())))

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        impact_table = impact_summary = self.html_report()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by the buffered point volcano')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr(
            'Thousand separator is represented by  %s' %
            get_thousand_separator())

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People affected by the buffered point volcano'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title,
                      'total_needs': self.total_needs},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 33
0
    def run(self, layers=None):
        """Run classified population evacuation Impact Function.

        :param layers: List of layers expected to contain where two layers
            should be present.

            * hazard_layer: Vector polygon layer
            * exposure_layer: Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to each hazard zones.

        :returns: Map of population exposed to each hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
        """
        self.validate()
        self.prepare(layers)

        # Parameters
        hazard_zone_attribute = self.parameters['hazard zone attribute']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Input checks
        if not hazard_layer.is_polygon_data:
            msg = ('Input hazard must be a polygon layer. I got %s with '
                   'layer type %s' % (hazard_layer.get_name(),
                                      hazard_layer.get_geometry_name()))
            raise Exception(msg)

        # Check if hazard_zone_attribute exists in hazard_layer
        if hazard_zone_attribute not in hazard_layer.get_attribute_names():
            msg = ('Hazard data %s does not contain expected hazard '
                   'zone attribute "%s". Please change it in the option. ' %
                   (hazard_layer.get_name(), hazard_zone_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Get unique hazard zones from the layer attribute
        self.hazard_zones = list(
            set(hazard_layer.get_data(hazard_zone_attribute)))

        # Find the target field name that has no conflict with default target
        attribute_names = hazard_layer.get_attribute_names()
        new_target_field = get_non_conflicting_attribute_name(
            self.target_field, attribute_names)
        self.target_field = new_target_field

        # Interpolated layer represents grid cell that lies in the polygon
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                exposure_layer,
                attribute_name=self.target_field
            )

        # Initialise total population affected by each hazard zone
        affected_population = {}
        for hazard_zone in self.hazard_zones:
            affected_population[hazard_zone] = 0

        # Count total affected population per hazard zone
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_zone = row[hazard_zone_attribute]
                affected_population[hazard_zone] += population

        # Count total population from exposure layer
        total_population = population_rounding(
            int(numpy.nansum(exposure_layer.get_data())))

        # Count total affected population
        total_affected_population = reduce(
            lambda x, y: x + y,
            [population for population in affected_population.values()])

        # check for zero impact
        if total_affected_population == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People impacted'),
                     '%s' % format_int(total_affected_population)],
                    header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [
            self.question,
            TableRow(
                [
                    tr('People impacted'),
                    '%s' % format_int(
                        population_rounding(total_affected_population)),
                    blank_cell],
                header=True)]

        for hazard_zone in self.hazard_zones:
            table_body.append(
                TableRow(
                    [
                        hazard_zone,
                        format_int(
                            population_rounding(
                                affected_population[hazard_zone]))
                    ]))

        table_body.extend([
            TableRow(tr(
                'Map shows the number of people impacted in each of the '
                'hazard zones.'))])

        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend(
            [TableRow(tr('Notes'), header=True),
             tr('Total population: %s in the exposure layer') % format_int(
                 total_population),
             tr('"nodata" values in the exposure layer are treated as 0 '
                'when counting the affected or total population')]
        )

        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People impacted by each hazard zone')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People impacted by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
    def run(self, layers):
        """Risk plugin for volcano population evacuation.

        :param layers: List of layers expected to contain where two layers
            should be present.

            * hazard_layer: Vector polygon layer of volcano impact zones
            * exposure_layer: Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """

        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Volcano KRB
        exposure_layer = get_exposure_layer(layers)

        question = get_question(
            hazard_layer.get_name(), exposure_layer.get_name(), self)

        # Input checks
        if not hazard_layer.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected '
                   % hazard_layer.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon or point layer. I got %s with '
               'layer type %s' % (hazard_layer.get_name(),
                                  hazard_layer.get_geometry_name()))
        if not (hazard_layer.is_polygon_data or hazard_layer.is_point_data):
            raise Exception(msg)

        data_table = hazard_layer.get_data()
        if hazard_layer.is_point_data:
            # Use concentric circles
            radii = self.parameters['distance [km]']

            centers = hazard_layer.get_geometry()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            hazard_layer = buffer_points(centers, rad_m, data_table=data_table)

            category_title = 'Radius'
            category_header = tr('Distance [km]')
            category_names = radii

            name_attribute = 'NAME'  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = 'KRB'
            category_header = tr('Category')

            # FIXME (Ole): Change to English and use translation system
            category_names = ['Kawasan Rawan Bencana III',
                              'Kawasan Rawan Bencana II',
                              'Kawasan Rawan Bencana I']

            name_attribute = 'GUNUNG'  # As in e.g. BNPB hazard map

        # Get names of volcanoes considered
        if name_attribute in hazard_layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in data_table:
                volcano_name_list.append(row[name_attribute])

            volcano_names = ''
            for name in volcano_name_list:
                volcano_names += '%s, ' % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        # Check if category_title exists in hazard_layer
        if not category_title in hazard_layer.get_attribute_names():
            msg = ('Hazard data %s did not contain expected '
                   'attribute %s ' % (hazard_layer.get_name(), category_title))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Find the target field name that has no conflict with default target
        attribute_names = hazard_layer.get_attribute_names()
        new_target_field = get_non_conflicting_attribute_name(
            self.target_field, attribute_names)
        self.target_field = new_target_field

        # Run interpolation function for polygon2raster
        interpolated_layer = assign_hazard_values_to_exposure_data(
            hazard_layer, exposure_layer, attribute_name=self.target_field)

        # Initialise data_table of output dataset with all data_table
        # from input polygon and a population count of zero
        new_data_table = hazard_layer.get_data()
        categories = {}
        for row in new_data_table:
            row[self.target_field] = 0
            category = row[category_title]
            categories[category] = 0

        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = float(row[self.target_field])

            # Update population count for associated polygon
            poly_id = row['polygon_id']
            new_data_table[poly_id][self.target_field] += population

            # Update population count for each category
            category = new_data_table[poly_id][category_title]
            categories[category] += population

        # Count totals
        total = int(numpy.sum(exposure_layer.get_data(nan=0)))

        # Don't show digits less than a 1000
        total = round_thousand(total)

        # Count number and cumulative for each zone
        cumulative = 0
        all_categories_population = {}
        all_categories_cumulative = {}
        for name in category_names:
            if category_title == 'Radius':
                key = name * 1000  # Convert to meters
            else:
                key = name
            # prevent key error
            population = int(categories.get(key, 0))

            population = round_thousand(population)

            cumulative += population
            cumulative = round_thousand(cumulative)

            all_categories_population[name] = population
            all_categories_cumulative[name] = cumulative

        # Use final accumulation as total number needing evacuation
        evacuated = cumulative

        # Calculate estimated minimum needs
        minimum_needs = self.parameters['minimum needs']
        total_needs = evacuated_population_weekly_needs(
            evacuated, minimum_needs)

        # Generate impact report for the pdf map
        blank_cell = ''
        table_body = [question,
                      TableRow([tr('Volcanoes considered'),
                                '%s' % volcano_names, blank_cell],
                               header=True),
                      TableRow([tr('People needing evacuation'),
                                '%s' % format_int(evacuated),
                                blank_cell],
                               header=True),
                      TableRow([category_header,
                                tr('Total'), tr('Cumulative')],
                               header=True)]

        for name in category_names:
            table_body.append(
                TableRow([name,
                          format_int(all_categories_population[name]),
                          format_int(all_categories_cumulative[name])]))

        table_body.extend([
            TableRow(tr(
                'Map shows the number of people affected in each of volcano '
                'hazard polygons.')),
            TableRow(
                [tr('Needs per week'), tr('Total'), blank_cell], header=True),
            [tr('Rice [kg]'), format_int(total_needs['rice']), blank_cell], [
                tr('Drinking Water [l]'),
                format_int(total_needs['drinking_water']),
                blank_cell],
            [tr('Clean Water [l]'), format_int(total_needs['water']),
                blank_cell],
            [tr('Family Kits'), format_int(total_needs['family_kits']),
                blank_cell],
            [tr('Toilets'), format_int(total_needs['toilets']), blank_cell]])
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend(
            [TableRow(tr('Notes'), header=True),
             tr('Total population %s in the exposure layer') % format_int(
                 total),
             tr('People need evacuation if they are within the '
                'volcanic hazard zones.')])

        population_counts = [x[self.target_field] for x in new_data_table]
        impact_summary = Table(table_body).toNewlineFreeString()

        # check for zero impact
        if numpy.nanmax(population_counts) == 0 == numpy.nanmin(
                population_counts):
            table_body = [
                question,
                TableRow([tr('People needing evacuation'),
                          '%s' % format_int(evacuated),
                          blank_cell], header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 30
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people)')
        legend_title = tr('Population count')

        # Create vector layer and return
        impact_layer = Vector(
            data=new_data_table,
            projection=hazard_layer.get_projection(),
            geometry=hazard_layer.get_geometry(as_geometry_objects=True),
            name=tr('People affected by volcanic hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)
        return impact_layer
Esempio n. 35
0
    def run(self):
        """Plugin for impact of population as derived by continuous hazard.

        Hazard is reclassified into 3 classes based on the extrema provided
        as impact function parameters.

        Counts number of people exposed to each category of the hazard

        :returns:
          Map of population exposed to high category
          Table with number of people in each category
        """

        thresholds = [
            p.value for p in self.parameters['Categorical thresholds'].value]

        # Thresholds must contain 3 thresholds
        if len(thresholds) != 3:
            raise FunctionParametersError(
                'The thresholds must consist of 3 values.')

        # Thresholds must monotonically increasing
        monotonically_increasing_flag = all(
            x < y for x, y in zip(thresholds, thresholds[1:]))
        if not monotonically_increasing_flag:
            raise FunctionParametersError(
                'Each threshold should be larger than the previous.')

        # The 3 categories
        low_t = thresholds[0]
        medium_t = thresholds[1]
        high_t = thresholds[2]

        # Extract data as numeric arrays
        hazard_data = self.hazard.layer.get_data(nan=True)  # Category
        if has_no_data(hazard_data):
            self.no_data_warning = True

        # Calculate impact as population exposed to each category
        exposure_data = self.exposure.layer.get_data(nan=True, scaling=True)
        if has_no_data(exposure_data):
            self.no_data_warning = True

        # Make 3 data for each zone. Get the value of the exposure if the
        # exposure is in the hazard zone, else just assign 0
        low_exposure = numpy.where(hazard_data < low_t, exposure_data, 0)
        medium_exposure = numpy.where(
            (hazard_data >= low_t) & (hazard_data < medium_t),
            exposure_data, 0)
        high_exposure = numpy.where(
            (hazard_data >= medium_t) & (hazard_data <= high_t),
            exposure_data, 0)
        impacted_exposure = low_exposure + medium_exposure + high_exposure

        # Count totals
        self.total_population = int(numpy.nansum(exposure_data))
        self.affected_population[
            tr('Population in high hazard areas')] = int(
                numpy.nansum(high_exposure))
        self.affected_population[
            tr('Population in medium hazard areas')] = int(
                numpy.nansum(medium_exposure))
        self.affected_population[
            tr('Population in low hazard areas')] = int(
                numpy.nansum(low_exposure))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Don't show digits less than a 1000
        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Style for impact layer
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impacted_exposure.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'map_title': self.metadata().key('map_title'),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            data=impacted_exposure,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=self.metadata().key('layer_name'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
    def run(self, layers):
        """Risk plugin for tsunami population evacuation.

        :param layers: List of layers expected to contain
              hazard_layer: Raster layer of tsunami depth
              exposure_layer: Raster layer of population data on the same grid
              as hazard_layer

        Counts number of people exposed to tsunami levels exceeding
        specified threshold.

        :returns: Map of population exposed to tsunami levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """

        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Tsunami inundation [m]
        exposure_layer = get_exposure_layer(layers)

        question = get_question(
            hazard_layer.get_name(), exposure_layer.get_name(), self)

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds [m]']

        verify(
            isinstance(thresholds, list),
            'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        data = hazard_layer.get_data(nan=0.0)  # Depth

        # Calculate impact as population exposed to depths > max threshold
        population = exposure_layer.get_data(nan=0.0, scaling=True)

        # Calculate impact to intermediate thresholds
        counts = []
        # merely initialize
        impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                impact = medium = numpy.where(data >= lo, population, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.sum(medium))

            # Sensible rounding
            val, rounding = population_rounding_full(val)
            counts.append([val, rounding])

        # Count totals
        evacuated, rounding = counts[-1]
        total = int(numpy.sum(population))
        # Don't show digits less than a 1000
        total = population_rounding(total)

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        # noinspection PyListCreation
        table_body = [
            question,
            TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                      '%s*' % format_int(evacuated)],
                     header=True),
            TableRow(
                tr('* Number is rounded up to the nearest %s') % rounding),
            TableRow(tr('Map shows the numbers of people needing evacuation'))]

        total_needs = evacuated_population_needs(
            evacuated, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(TableRow(
                [
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                header=True))
            for resource in needs:
                table_body.append(TableRow([
                    tr(resource['table name']),
                    format_int(resource['amount'])]))

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(TableRow(tr('If yes, where are they located and how '
                                      'will we distribute them?')))
        table_body.append(TableRow(tr(
            'If no, where can we obtain additional relief items from and how '
            'will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if tsunami levels exceed %(eps).1f m') %
            {'eps': thresholds[-1]},
            tr('Minimum needs are defined in BNPB regulation 7/2008'),
            tr('All values are rounded up to the nearest integer in order to '
               'avoid representing human lives as fractions.')])

        if len(counts) > 1:
            table_body.append(TableRow(tr('Detailed breakdown'), header=True))

            for i, val in enumerate(counts[:-1]):
                s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i')
                     % {'lo': thresholds[i],
                        'hi': thresholds[i + 1],
                        'val': format_int(val[0])})
                table_body.append(TableRow(s))

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            table_body = [
                question,
                TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                          '%s' % format_int(evacuated)],
                         header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create raster object and return
        raster = Raster(
            impact,
            projection=hazard_layer.get_projection(),
            geotransform=hazard_layer.get_geotransform(),
            name=tr('Population which %s') % (
                get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'evacuated': evacuated,
                'total_needs': total_needs},
            style_info=style_info)
        return raster
Esempio n. 37
0
    def run(self, layers=None):
        """Risk plugin for tsunami population evacuation.

        :param layers: List of layers expected to contain
              hazard_layer: Raster layer of tsunami depth
              exposure_layer: Raster layer of population data on the same grid
              as hazard_layer

        Counts number of people exposed to tsunami levels exceeding
        specified threshold.

        :returns: Map of population exposed to tsunami levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """
        self.validate()
        self.prepare(layers)

        # Identify hazard and exposure layers
        hazard_layer = self.hazard  # Tsunami inundation [m]
        exposure_layer = self.exposure

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds [m]']

        verify(isinstance(thresholds, list),
               'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        data = hazard_layer.get_data(nan=True)  # Depth
        no_data_warning = False
        if has_no_data(data):
            no_data_warning = True

        # Calculate impact as population exposed to depths > max threshold
        population = exposure_layer.get_data(nan=True, scaling=True)
        if has_no_data(population):
            no_data_warning = True

        # Calculate impact to intermediate thresholds
        counts = []
        # merely initialize
        impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                impact = medium = numpy.where(data >= lo, population, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.nansum(medium))

            # Sensible rounding
            val, rounding = population_rounding_full(val)
            counts.append([val, rounding])

        # Carry the no data values forward to the impact layer.
        impact = numpy.where(numpy.isnan(population), numpy.nan, impact)
        impact = numpy.where(numpy.isnan(data), numpy.nan, impact)

        # Count totals
        evacuated, rounding = counts[-1]
        total = int(numpy.nansum(population))
        # Don't show digits less than a 1000
        total = population_rounding(total)

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        table_body, total_needs = self._tabulate(counts, evacuated,
                                                 minimum_needs, self.question,
                                                 rounding, thresholds, total,
                                                 no_data_warning)

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            table_body = [
                self.question,
                TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                          '%s' % format_int(evacuated)],
                         header=True)
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create raster object and return
        raster = Raster(
            impact,
            projection=hazard_layer.get_projection(),
            geotransform=hazard_layer.get_geotransform(),
            name=tr('Population which %s') %
            (self.impact_function_manager.get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'evacuated': evacuated,
                'total_needs': total_needs
            },
            style_info=style_info)
        self._impact = raster
        return raster
Esempio n. 38
0
class ITBFatalityFunction(ImpactFunction):
    # noinspection PyUnresolvedReferences
    """Indonesian Earthquake Fatality Model.

    This model was developed by Institut Teknologi Bandung (ITB) and
    implemented by Dr. Hadi Ghasemi, Geoscience Australia.


    Reference:

    Indonesian Earthquake Building-Damage and Fatality Models and
    Post Disaster Survey Guidelines Development,
    Bali, 27-28 February 2012, 54pp.


    Algorithm:

    In this study, the same functional form as Allen (2009) is adopted
    to express fatality rate as a function of intensity (see Eq. 10 in the
    report). The Matlab built-in function (fminsearch) for  Nelder-Mead
    algorithm was used to estimate the model parameters. The objective
    function (L2G norm) that is minimised during the optimisation is the
    same as the one used by Jaiswal et al. (2010).

    The coefficients used in the indonesian model are
    x=0.62275231, y=8.03314466, zeta=2.15

    Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J.,
    Lin, K., and Hearne, M., 2009. An Atlas of ShakeMaps and population
    exposure catalog for earthquake loss modeling, Bull. Earthq. Eng. 7,
    701-718.

    Jaiswal, K., and Wald, D., 2010. An empirical model for global earthquake
    fatality estimation, Earthq. Spectra 26, 1017-1037.


    Caveats and limitations:

    The current model is the result of the above mentioned workshop and
    reflects the best available information. However, the current model
    has a number of issues listed below and is expected to evolve further
    over time.

    1 - The model is based on limited number of observed fatality
        rates during 4 past fatal events.
    2 - The model clearly over-predicts the fatality rates at
        intensities higher than VIII.
    3 - The model only estimates the expected fatality rate for a given
        intensity level; however the associated uncertainty for the proposed
        model is not addressed.
    4 - There are few known mistakes in developing the current model:
        - rounding MMI values to the nearest 0.5,
        - Implementing Finite-Fault models of candidate events, and
        - consistency between selected GMPEs with those in use by BMKG.
          These issues will be addressed by ITB team in the final report.

    Note: Because of these caveats, decisions should not be made solely on
    the information presented here and should always be verified by ground
    truthing and other reliable information sources.
    """

    _metadata = ITBFatalityMetadata()

    def __init__(self):
        super(ITBFatalityFunction, self).__init__()

        # AG: Use the proper minimum needs, update the parameters
        self.parameters = add_needs_parameters(self.parameters)
        self.hardcoded_parameters = OrderedDict([
            ('x', 0.62275231), ('y', 8.03314466),  # Model coefficients
            # Rates of people displaced for each MMI level
            ('displacement_rate', {
                1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 1.0,
                7: 1.0, 8: 1.0, 9: 1.0, 10: 1.0
            }),
            ('mmi_range', range(2, 10)),
            ('step', 0.5),
            # Threshold below which layer should be transparent
            ('tolerance', 0.01),
            ('calculate_displaced_people', True)
        ])

    def fatality_rate(self, mmi):
        """ITB method to compute fatality rate.

        :param mmi:
        """
        # As per email discussion with Ole, Trevor, Hadi, mmi < 4 will have
        # a fatality rate of 0 - Tim
        if mmi < 4:
            return 0

        x = self.hardcoded_parameters['x']
        y = self.hardcoded_parameters['y']
        # noinspection PyUnresolvedReferences
        return numpy.power(10.0, x * mmi - y)

    def run(self, layers=None):
        """Indonesian Earthquake Fatality Model.

        Input:

        :param layers: List of layers expected to contain,

                hazard: Raster layer of MMI ground shaking

                exposure: Raster layer of population count
        """
        self.validate()
        self.prepare(layers)

        displacement_rate = self.hardcoded_parameters['displacement_rate']

        # Tolerance for transparency
        tolerance = self.hardcoded_parameters['tolerance']

        # Extract input layers
        intensity = self.hazard
        population = self.exposure

        # Extract data grids
        hazard = intensity.get_data()   # Ground Shaking
        exposure = population.get_data(scaling=True)  # Population Density

        # Calculate people affected by each MMI level
        # FIXME (Ole): this range is 2-9. Should 10 be included?
        mmi_range = self.hardcoded_parameters['mmi_range']
        number_of_exposed = {}
        number_of_displaced = {}
        number_of_fatalities = {}

        # Calculate fatality rates for observed Intensity values (hazard
        # based on ITB power model
        mask = numpy.zeros(hazard.shape)
        for mmi in mmi_range:
            # Identify cells where MMI is in class i and
            # count people affected by this shake level
            mmi_matches = numpy.where(
                (hazard > mmi - self.hardcoded_parameters['step']) * (
                    hazard <= mmi + self.hardcoded_parameters['step']),
                exposure, 0)

            # Calculate expected number of fatalities per level
            fatality_rate = self.fatality_rate(mmi)

            fatalities = fatality_rate * mmi_matches

            # Calculate expected number of displaced people per level
            try:
                displacements = displacement_rate[mmi] * mmi_matches
            except KeyError, e:
                msg = 'mmi = %i, mmi_matches = %s, Error msg: %s' % (
                    mmi, str(mmi_matches), str(e))
                # noinspection PyExceptionInherit
                raise InaSAFEError(msg)

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            displacements = numpy.where(
                displacements > fatalities, displacements - fatalities, 0)

            # Sum up numbers for map
            mask += displacements   # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = numpy.nansum(mmi_matches.flat)
            number_of_displaced[mmi] = numpy.nansum(displacements.flat)
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = numpy.nansum(fatalities.flat)

        # Set resulting layer to NaN when less than a threshold. This is to
        # achieve transparency (see issue #126).
        mask[mask < tolerance] = numpy.nan

        # Total statistics
        total, rounding = population_rounding_full(numpy.nansum(exposure.flat))

        # Compute number of fatalities
        fatalities = population_rounding(numpy.nansum(
            number_of_fatalities.values()))
        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        if fatalities < 50:
            fatalities = 0

        # Compute number of people displaced due to building collapse
        displaced = population_rounding(numpy.nansum(
            number_of_displaced.values()))

        # Generate impact report
        table_body = [self.question]

        # Add total fatality estimate
        s = format_int(fatalities)
        table_body.append(TableRow([tr('Number of fatalities'), s],
                                   header=True))

        if self.hardcoded_parameters['calculate_displaced_people']:
            # Add total estimate of people displaced
            s = format_int(displaced)
            table_body.append(TableRow([tr('Number of people displaced'), s],
                                       header=True))
        else:
            displaced = 0

        # Add estimate of total population in area
        s = format_int(int(total))
        table_body.append(TableRow([tr('Total number of people'), s],
                                   header=True))

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        table_body = [
            self.question, TableRow(
                [tr('Fatalities'), '%s' % format_int(fatalities)],
                header=True),
            TableRow(
                [tr('People displaced'), '%s' % format_int(displaced)],
                header=True),
            TableRow(tr('Map shows the estimation of displaced population'))]

        total_needs = evacuated_population_needs(
            displaced, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(TableRow(
                [
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                header=True))
            for resource in needs:
                table_body.append(TableRow([
                    tr(resource['table name']),
                    format_int(resource['amount'])]))
        table_body.append(TableRow(tr('Provenance'), header=True))
        table_body.append(TableRow(self.parameters['provenance']))

        table_body.append(TableRow(tr('Action Checklist:'), header=True))

        if fatalities > 0:
            table_body.append(tr('Are there enough victim identification '
                                 'units available for %s people?') %
                              format_int(fatalities))
        if displaced > 0:
            table_body.append(tr('Are there enough shelters and relief items '
                                 'available for %s people?')
                              % format_int(displaced))
            table_body.append(TableRow(tr('If yes, where are they located and '
                                          'how will we distribute them?')))
            table_body.append(TableRow(tr('If no, where can we obtain '
                                          'additional relief items from and '
                                          'how will we transport them?')))

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total population: %s') % format_int(total),
                           tr('People are considered to be displaced if '
                              'they experience and survive a shake level'
                              'of more than 5 on the MMI scale '),
                           tr('Minimum needs are defined in BNPB '
                              'regulation 7/2008'),
                           tr('The fatality calculation assumes that '
                              'no fatalities occur for shake levels below 4 '
                              'and fatality counts of less than 50 are '
                              'disregarded.'),
                           tr('All values are rounded up to the nearest '
                              'integer in order to avoid representing human '
                              'lives as fractions.')])

        table_body.append(TableRow(tr('Notes'), header=True))
        table_body.append(tr('Fatality model is from '
                             'Institute of Teknologi Bandung 2012.'))
        table_body.append(
            tr('Population numbers rounded up to the nearest %s.') % rounding)

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(mask) == 0 == numpy.nanmin(mask):
            table_body = [
                self.question,
                TableRow([tr('Fatalities'), '%s' % format_int(fatalities)],
                         header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(mask.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 30
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Earthquake impact to population')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population Count')

        # Create raster object and return
        raster = Raster(
            mask,
            projection=population.get_projection(),
            geotransform=population.get_geotransform(),
            keywords={
                'impact_summary': impact_summary,
                'total_population': total,
                'total_fatalities': fatalities,
                'fatalities_per_mmi': number_of_fatalities,
                'exposed_per_mmi': number_of_exposed,
                'displaced_per_mmi': number_of_displaced,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs},
            name=tr('Estimated displaced population per cell'),
            style_info=style_info)
        self._impact = raster
        return raster
Esempio n. 39
0
    def run(self, layers):
        """Risk plugin for tsunami population evacuation.

        :param layers: List of layers expected to contain
              hazard_layer: Raster layer of tsunami depth
              exposure_layer: Raster layer of population data on the same grid
              as hazard_layer

        Counts number of people exposed to tsunami levels exceeding
        specified threshold.

        :returns: Map of population exposed to tsunami levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """

        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Tsunami inundation [m]
        exposure_layer = get_exposure_layer(layers)

        question = get_question(hazard_layer.get_name(),
                                exposure_layer.get_name(), self)

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds [m]']

        verify(isinstance(thresholds, list),
               'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        data = hazard_layer.get_data(nan=0.0)  # Depth

        # Calculate impact as population exposed to depths > max threshold
        population = exposure_layer.get_data(nan=0.0, scaling=True)

        # Calculate impact to intermediate thresholds
        counts = []
        # merely initialize
        impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                impact = medium = numpy.where(data >= lo, population, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.sum(medium))

            # Sensible rounding
            val, rounding = population_rounding_full(val)
            counts.append([val, rounding])

        # Count totals
        evacuated, rounding = counts[-1]
        total = int(numpy.sum(population))
        # Don't show digits less than a 1000
        total = population_rounding(total)

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        # noinspection PyListCreation
        table_body = [
            question,
            TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                      '%s*' % format_int(evacuated)],
                     header=True),
            TableRow(
                tr('* Number is rounded up to the nearest %s') % rounding),
            TableRow(tr('Map shows the numbers of people needing evacuation'))
        ]

        total_needs = evacuated_population_needs(evacuated, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(
                TableRow([
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                         header=True))
            for resource in needs:
                table_body.append(
                    TableRow([
                        tr(resource['table name']),
                        format_int(resource['amount'])
                    ]))

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(
            TableRow(
                tr('If yes, where are they located and how '
                   'will we distribute them?')))
        table_body.append(
            TableRow(
                tr('If no, where can we obtain additional relief items from and how '
                   'will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if tsunami levels exceed %(eps).1f m') %
            {
                'eps': thresholds[-1]
            },
            tr('Minimum needs are defined in BNPB regulation 7/2008'),
            tr('All values are rounded up to the nearest integer in order to '
               'avoid representing human lives as fractions.')
        ])

        if len(counts) > 1:
            table_body.append(TableRow(tr('Detailed breakdown'), header=True))

            for i, val in enumerate(counts[:-1]):
                s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i')
                     % {
                         'lo': thresholds[i],
                         'hi': thresholds[i + 1],
                         'val': format_int(val[0])
                     })
                table_body.append(TableRow(s))

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            table_body = [
                question,
                TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                          '%s' % format_int(evacuated)],
                         header=True)
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create raster object and return
        raster = Raster(impact,
                        projection=hazard_layer.get_projection(),
                        geotransform=hazard_layer.get_geotransform(),
                        name=tr('Population which %s') %
                        (get_function_title(self).lower()),
                        keywords={
                            'impact_summary': impact_summary,
                            'impact_table': impact_table,
                            'map_title': map_title,
                            'legend_notes': legend_notes,
                            'legend_units': legend_units,
                            'legend_title': legend_title,
                            'evacuated': evacuated,
                            'total_needs': total_needs
                        },
                        style_info=style_info)
        return raster
Esempio n. 40
0
    def run(self):
        """Run volcano population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """

        # Parameters
        self.hazard_class_attribute = self.hazard.keyword('field')
        name_attribute = self.hazard.keyword('volcano_name_field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True

        # Input checks
        if not self.hazard.layer.is_polygon_data:
            message = tr(
                'Input hazard must be a polygon layer. I got %s with layer '
                'type %s' % (
                    self.hazard.layer.get_name(),
                    self.hazard.layer.get_geometry_name()))
            raise Exception(message)

        # Check if hazard_class_attribute exists in hazard_layer
        if (self.hazard_class_attribute not in
                self.hazard.layer.get_attribute_names()):
            message = tr(
                'Hazard data %s did not contain expected attribute ''%s ' % (
                self.hazard.layer.get_name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        features = self.hazard.layer.get_data()

        # Get names of volcanoes considered
        if name_attribute in self.hazard.layer.get_attribute_names():
            # Run through all polygons and get unique names
            for row in features:
                self.volcano_names.add(row[name_attribute])

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Initialize OrderedDict of affected buildings
        self.affected_population = OrderedDict()
        # Iterate over vector hazard classes
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                self.affected_population[vector_hazard_class['name']] = 0

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field)

        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_value = get_key_for_value(
                    row[self.hazard_class_attribute],
                    self.hazard_class_mapping)
                if not hazard_value:
                    hazard_value = self._not_affected_value
                self.affected_population[hazard_value] += population

        # Count totals
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'target_field': self.target_field,
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': self.total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info
        )

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
    def run(self, layers):
        """Risk plugin for flood population evacuation

        Input:
          layers: List of layers expected to contain

              my_hazard : Vector polygon layer of flood depth

              my_exposure : Raster layer of population data on the same
                grid as my_hazard

        Counts number of people exposed to areas identified as flood prone

        Return
          Map of population exposed to flooding

          Table with number of people evacuated and supplies required
        """
        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Flood inundation
        my_exposure = get_exposure_layer(layers)

        question = get_question(my_hazard.get_name(), my_exposure.get_name(),
                                self)

        # Check that hazard is polygon type
        if not my_hazard.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected ' %
                   my_hazard.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon layer. I got %s with layer '
               'type %s' %
               (my_hazard.get_name(), my_hazard.get_geometry_name()))
        if not my_hazard.is_polygon_data:
            raise Exception(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(my_hazard,
                                                  my_exposure,
                                                  attribute_name='population')

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a population count of zero
        new_attributes = my_hazard.get_data()
        category_title = 'affected'  # FIXME: Should come from keywords
        deprecated_category_title = 'FLOODPRONE'
        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            try:
                cat = attr[category_title]
            except KeyError:
                cat = attr['FLOODPRONE']
            categories[cat] = 0

        # Count affected population per polygon, per category and total
        affected_population = 0
        for attr in P.get_data():

            affected = False
            if 'affected' in attr:
                res = attr['affected']
                if res is None:
                    x = False
                else:
                    x = bool(res)
                affected = x
            elif 'FLOODPRONE' in attr:
                # If there isn't an 'affected' attribute,
                res = attr['FLOODPRONE']
                if res is not None:
                    affected = res.lower() == 'yes'
            elif 'Affected' in attr:
                # Check the default attribute assigned for points
                # covered by a polygon
                res = attr['Affected']
                if res is None:
                    x = False
                else:
                    x = res
                affected = x
            else:
                # there is no flood related attribute
                msg = ('No flood related attribute found in %s. '
                       'I was looking fore either "Flooded", "FLOODPRONE" '
                       'or "Affected". The latter should have been '
                       'automatically set by call to '
                       'assign_hazard_values_to_exposure_data(). '
                       'Sorry I can\'t help more.')
                raise Exception(msg)

            if affected:
                # Get population at this location
                pop = float(attr['population'])

                # Update population count for associated polygon
                poly_id = attr['polygon_id']
                new_attributes[poly_id][self.target_field] += pop

                # Update population count for each category
                try:
                    cat = new_attributes[poly_id][category_title]
                except KeyError:
                    cat = new_attributes[poly_id][deprecated_category_title]
                categories[cat] += pop

                # Update total
                affected_population += pop

        affected_population = round_thousand(affected_population)
        # Estimate number of people in need of evacuation
        evacuated = (affected_population *
                     self.parameters['evacuation_percentage'] / 100.0)

        total = int(numpy.sum(my_exposure.get_data(nan=0, scaling=False)))

        # Don't show digits less than a 1000
        total = round_thousand(total)
        evacuated = round_thousand(evacuated)

        # Calculate estimated minimum needs
        minimum_needs = self.parameters['minimum needs']
        tot_needs = evacuated_population_weekly_needs(evacuated, minimum_needs)

        # Generate impact report for the pdf map
        table_body = [
            question,
            TableRow([
                tr('People affected'),
                '%s%s' % (format_int(int(affected_population)),
                          ('*' if affected_population >= 1000 else ''))
            ],
                     header=True),
            TableRow([
                tr('People needing evacuation'),
                '%s%s' % (format_int(int(evacuated)),
                          ('*' if evacuated >= 1000 else ''))
            ],
                     header=True),
            TableRow([
                TableCell(tr('* Number is rounded to the nearest 1000'),
                          col_span=2)
            ],
                     header=False),
            TableRow([
                tr('Evacuation threshold'),
                '%s%%' % format_int(self.parameters['evacuation_percentage'])
            ],
                     header=True),
            TableRow(
                tr('Map shows population affected in each flood'
                   ' prone area')),
            TableRow(
                tr('Table below shows the weekly minium needs '
                   'for all evacuated people')),
            TableRow([tr('Needs per week'), tr('Total')], header=True),
            [tr('Rice [kg]'), format_int(tot_needs['rice'])],
            [
                tr('Drinking Water [l]'),
                format_int(tot_needs['drinking_water'])
            ], [tr('Clean Water [l]'),
                format_int(tot_needs['water'])],
            [tr('Family Kits'),
             format_int(tot_needs['family_kits'])],
            [tr('Toilets'), format_int(tot_needs['toilets'])]
        ]
        impact_table = Table(table_body).toNewlineFreeString()

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(
            TableRow(
                tr('If yes, where are they located and how '
                   'will we distribute them?')))
        table_body.append(
            TableRow(
                tr('If no, where can we obtain additional '
                   'relief items from and how will we '
                   'transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if in area identified '
               'as "Flood Prone"'),
            tr('Minimum needs are defined in BNPB '
               'regulation 7/2008')
        ])
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        # Define classes for legend for flooded population counts
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        population_counts = [x['population'] for x in new_attributes]
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)

        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 0
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people per polygon)')
        legend_title = tr('Population Count')

        # Create vector layer and return
        V = Vector(data=new_attributes,
                   projection=my_hazard.get_projection(),
                   geometry=my_hazard.get_geometry(),
                   name=tr('Population affected by flood prone areas'),
                   keywords={
                       'impact_summary': impact_summary,
                       'impact_table': impact_table,
                       'target_field': self.target_field,
                       'map_title': map_title,
                       'legend_notes': legend_notes,
                       'legend_units': legend_units,
                       'legend_title': legend_title
                   },
                   style_info=style_info)
        return V
Esempio n. 42
0
    def run(self, layers):
        """Risk plugin for volcano hazard on building/structure

        Input
          layers: List of layers expected to contain
              my_hazard: Hazard layer of volcano
              my_exposure: Vector layer of structure data on
              the same grid as my_hazard

        Counts number of building exposed to each volcano hazard zones.

        Return
          Map of building exposed to volcanic hazard zones
          Table with number of buildings affected
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Volcano hazard layer
        my_exposure = get_exposure_layer(layers)
        is_point_data = False

        question = get_question(my_hazard.get_name(),
                                my_exposure.get_name(),
                                self)

        # Input checks
        if not my_hazard.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected '
                   % my_hazard.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon or point layer. I got %s '
               'with layer type %s' %
               (my_hazard.get_name(), my_hazard.get_geometry_name()))
        if not (my_hazard.is_polygon_data or my_hazard.is_point_data):
            raise Exception(msg)

        if my_hazard.is_point_data:
            # Use concentric circles
            radii = self.parameters['distances [km]']
            is_point_data = True

            centers = my_hazard.get_geometry()
            attributes = my_hazard.get_data()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            Z = make_circular_polygon(centers, rad_m, attributes=attributes)
            # To check
            category_title = 'Radius'
            my_hazard = Z

            category_names = rad_m
            name_attribute = 'NAME'  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = 'KRB'

            # FIXME (Ole): Change to English and use translation system
            category_names = ['Kawasan Rawan Bencana III',
                              'Kawasan Rawan Bencana II',
                              'Kawasan Rawan Bencana I']
            name_attribute = 'GUNUNG'  # As in e.g. BNPB hazard map

        # Get names of volcanos considered
        if name_attribute in my_hazard.get_attribute_names():
            D = {}
            for att in my_hazard.get_data():
                # Run through all polygons and get unique names
                D[att[name_attribute]] = None

            volcano_names = ''
            for name in D:
                volcano_names += '%s, ' % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        if not category_title in my_hazard.get_attribute_names():
            msg = ('Hazard data %s did not contain expected '
                   'attribute %s ' % (my_hazard.get_name(), category_title))
            raise InaSAFEError(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(my_hazard, my_exposure)

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a building count of zero
        new_attributes = my_hazard.get_data()

        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            cat = attr[category_title]
            categories[cat] = 0

        # Count impacted building per polygon and total
        for attr in P.get_data():

            # Update building count for associated polygon
            poly_id = attr['polygon_id']
            if poly_id is not None:
                new_attributes[poly_id][self.target_field] += 1

                # Update building count for each category
                cat = new_attributes[poly_id][category_title]
                categories[cat] += 1

        # Count totals
        total = len(my_exposure)

        # Generate simple impact report
        blank_cell = ''
        table_body = [question,
                      TableRow([tr('Volcanos considered'),
                                '%s' % volcano_names, blank_cell],
                               header=True),
                      TableRow([tr('Distance [km]'), tr('Total'),
                                tr('Cumulative')],
                               header=True)]

        cum = 0
        for name in category_names:
            # prevent key error
            count = categories.get(name, 0)
            cum += count
            if is_point_data:
                name = int(name) / 1000
            table_body.append(TableRow([name, format_int(count),
                                        format_int(cum)]))

        table_body.append(TableRow(tr('Map shows buildings affected in '
                                      'each of volcano hazard polygons.')))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total number of buildings %s in the viewable '
                              'area') % format_int(total),
                           tr('Only buildings available in OpenStreetMap '
                              'are considered.')])
        impact_summary = Table(table_body).toNewlineFreeString()
        map_title = tr('Buildings affected by volcanic hazard zone')

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        building_counts = [x[self.target_field] for x in new_attributes]
        classes = create_classes(building_counts, len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 30
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('Building affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(building)')
        legend_title = tr('Building count')

        # Create vector layer and return
        V = Vector(data=new_attributes,
                   projection=my_hazard.get_projection(),
                   geometry=my_hazard.get_geometry(as_geometry_objects=True),
                   name=tr('Buildings affected by volcanic hazard zone'),
                   keywords={'impact_summary': impact_summary,
                             'impact_table': impact_table,
                             'target_field': self.target_field,
                             'map_title': map_title,
                             'legend_notes': legend_notes,
                             'legend_units': legend_units,
                             'legend_title': legend_title},
                   style_info=style_info)
        return V
Esempio n. 43
0
    def run(self, layers=None):
        """Risk plugin for flood population evacuation.

        :param layers: List of layers expected to contain

            * hazard_layer : Vector polygon layer of flood depth
            * exposure_layer : Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to areas identified as flood prone

        :returns: Map of population exposed to flooding Table with number of
            people evacuated and supplies required.
        :rtype: tuple
        """
        self.validate()
        self.prepare(layers)

        # Get the IF parameters
        affected_field = self.parameters['affected_field']
        affected_value = self.parameters['affected_value']
        evacuation_percentage = self.parameters['evacuation_percentage']

        # Identify hazard and exposure layers
        hazard_layer = self.hazard
        exposure_layer = self.exposure

        # Check that hazard is polygon type
        if not hazard_layer.is_polygon_data:
            message = (
                'Input hazard must be a polygon layer. I got %s with layer '
                'type %s' % (
                    hazard_layer.get_name(),
                    hazard_layer.get_geometry_name()))
            raise Exception(message)

        nan_warning = False
        if has_no_data(exposure_layer.get_data(nan=True)):
            nan_warning = True

        # Check that affected field exists in hazard layer
        if affected_field in hazard_layer.get_attribute_names():
            self.use_affected_field = True

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                exposure_layer,
                attribute_name=self.target_field)

        # Data for manipulating the covered_exposure layer
        new_covered_exposure_data = covered_exposure.get_data()
        covered_exposure_top_left = numpy.array([
            covered_exposure.get_geotransform()[0],
            covered_exposure.get_geotransform()[3]])
        covered_exposure_dimension = numpy.array([
            covered_exposure.get_geotransform()[1],
            covered_exposure.get_geotransform()[5]])

        # Count affected population per polygon, per category and total
        total_affected_population = 0
        for attr in interpolated_layer.get_data():
            affected = False
            if self.use_affected_field:
                row_affected_value = attr[affected_field]
                if row_affected_value is not None:
                    if isinstance(row_affected_value, Number):
                        type_func = type(row_affected_value)
                        affected = row_affected_value == type_func(
                            affected_value)
                    else:
                        affected =\
                            get_unicode(affected_value).lower() == \
                            get_unicode(row_affected_value).lower()
            else:
                # assume that every polygon is affected (see #816)
                affected = True

            if affected:
                # Get population at this location
                population = attr[self.target_field]
                if not numpy.isnan(population):
                    population = float(population)
                    total_affected_population += population
            else:
                # If it's not affected, set the value of the impact layer to 0
                grid_point = attr['grid_point']
                index = numpy.floor(
                    (grid_point - covered_exposure_top_left) / (
                        covered_exposure_dimension)).astype(int)
                new_covered_exposure_data[index[1]][index[0]] = 0

        # Estimate number of people in need of evacuation
        evacuated = (
            total_affected_population * evacuation_percentage / 100.0)

        total_population = int(
            numpy.nansum(exposure_layer.get_data(scaling=False)))

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        # Rounding
        total_affected_population, rounding = population_rounding_full(
            total_affected_population)
        total_population = population_rounding(total_population)
        evacuated, rounding_evacuated = population_rounding_full(evacuated)

        # Generate impact report for the pdf map
        table_body, total_needs = self._tabulate(
            total_affected_population,
            evacuated,
            minimum_needs,
            self.question,
            rounding,
            rounding_evacuated)

        impact_table = Table(table_body).toNewlineFreeString()

        self._tabulate_action_checklist(
            table_body,
            total_population,
            nan_warning)
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            new_covered_exposure_data.flat[:], len(colours))

        # check for zero impact
        if min(classes) == 0 == max(classes):
            table_body = [
                self.question,
                TableRow(
                    [tr('People affected'),
                     '%s' % format_int(total_affected_population)],
                    header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people per polygon)')
        legend_title = tr('Population Count')

        # Create vector layer and return
        impact_layer = Raster(
            data=new_covered_exposure_data,
            projection=covered_exposure.get_projection(),
            geotransform=covered_exposure.get_geotransform(),
            name=tr('People affected by flood prone areas'),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'target_field': self.target_field,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'affected_population': total_affected_population,
                'total_population': total_population,
                'total_needs': total_needs},
            style_info=style_info)
        self._impact = impact_layer
        return impact_layer
Esempio n. 44
0
    def run(self, layers):
        """Risk plugin for volcano hazard on building/structure.

        Counts number of building exposed to each volcano hazard zones.

        :param layers: List of layers expected to contain.
                * hazard_layer: Hazard layer of volcano
                * exposure_layer: Vector layer of structure data on
                the same grid as hazard_layer

        :returns: Map of building exposed to volcanic hazard zones.
                  Table with number of buildings affected
        :rtype: dict
        """
        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Volcano hazard layer
        exposure_layer = get_exposure_layer(layers)
        is_point_data = False

        question = get_question(
            hazard_layer.get_name(), exposure_layer.get_name(), self)

        # Input checks
        if not hazard_layer.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected '
                   % hazard_layer.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon or point layer. I got %s '
               'with layer type %s' %
               (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
        if not (hazard_layer.is_polygon_data or hazard_layer.is_point_data):
            raise Exception(msg)

        if hazard_layer.is_point_data:
            # Use concentric circles
            radii = self.parameters['distances [km]']
            is_point_data = True

            centers = hazard_layer.get_geometry()
            attributes = hazard_layer.get_data()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            hazard_layer = buffer_points(centers, rad_m, data_table=attributes)
            # To check
            category_title = 'Radius'
            category_names = rad_m
            name_attribute = 'NAME'  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = 'KRB'

            # FIXME (Ole): Change to English and use translation system
            category_names = ['Kawasan Rawan Bencana III',
                              'Kawasan Rawan Bencana II',
                              'Kawasan Rawan Bencana I']
            name_attribute = 'GUNUNG'  # As in e.g. BNPB hazard map

        # Get names of volcanoes considered
        if name_attribute in hazard_layer.get_attribute_names():
            volcano_name_list = []
            for row in hazard_layer.get_data():
                # Run through all polygons and get unique names
                volcano_name_list.append(row[name_attribute])

            volcano_names = ''
            for name in volcano_name_list:
                volcano_names += '%s, ' % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        # Check if category_title exists in hazard_layer
        if not category_title in hazard_layer.get_attribute_names():
            msg = ('Hazard data %s did not contain expected '
                   'attribute %s ' % (hazard_layer.get_name(), category_title))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Find the target field name that has no conflict with default
        # target
        attribute_names = hazard_layer.get_attribute_names()
        new_target_field = get_non_conflicting_attribute_name(
            self.target_field, attribute_names)
        self.target_field = new_target_field

        # Run interpolation function for polygon2raster
        interpolated_layer = assign_hazard_values_to_exposure_data(
            hazard_layer, exposure_layer)

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a building count of zero
        new_data_table = hazard_layer.get_data()

        categories = {}
        for row in new_data_table:
            row[self.target_field] = 0
            category = row[category_title]
            categories[category] = 0

        # Count impacted building per polygon and total
        for row in interpolated_layer.get_data():
            # Update building count for associated polygon
            poly_id = row['polygon_id']
            if poly_id is not None:
                new_data_table[poly_id][self.target_field] += 1

                # Update building count for each category
                category = new_data_table[poly_id][category_title]
                categories[category] += 1

        # Count totals
        total = len(exposure_layer)

        # Generate simple impact report
        blank_cell = ''
        table_body = [question,
                      TableRow([tr('Volcanoes considered'),
                                '%s' % volcano_names, blank_cell],
                               header=True),
                      TableRow([tr('Distance [km]'), tr('Total'),
                                tr('Cumulative')],
                               header=True)]

        cumulative = 0
        for name in category_names:
            # prevent key error
            count = categories.get(name, 0)
            cumulative += count
            if is_point_data:
                name = int(name) / 1000
            table_body.append(TableRow([name, format_int(count),
                                        format_int(cumulative)]))

        table_body.append(TableRow(tr('Map shows buildings affected in '
                                      'each of volcano hazard polygons.')))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total number of buildings %s in the viewable '
                              'area') % format_int(total),
                           tr('Only buildings available in OpenStreetMap '
                              'are considered.')])

        impact_summary = Table(table_body).toNewlineFreeString()
        building_counts = [x[self.target_field] for x in new_data_table]

        if max(building_counts) == 0 == min(building_counts):
            table_body = [
                question,
                TableRow([tr('Number of buildings affected'),
                          '%s' % format_int(cumulative), blank_cell],
                         header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']

        # Create Classes
        classes = create_classes(building_counts, len(colours))
        # Create Interval Classes
        interval_classes = humanize_class(classes)

        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                style_class['min'] = 0
            else:
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = 30
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(building)')
        legend_title = tr('Building count')

        # Create vector layer and return
        impact_layer = Vector(
            data=new_data_table,
            projection=hazard_layer.get_projection(),
            geometry=hazard_layer.get_geometry(as_geometry_objects=True),
            name=tr('Buildings affected by volcanic hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)
        return impact_layer
Esempio n. 45
0
    def run(self, layers=None):
        """Plugin for impact of population as derived by categorised hazard.

        :param layers: List of layers expected to contain

            * hazard_layer: Raster layer of categorised hazard
            * exposure_layer: Raster layer of population data

        Counts number of people exposed to each category of the hazard

        :returns:
          Map of population exposed to high category
          Table with number of people in each category
        """
        self.validate()
        self.prepare(layers)

        thresholds = self.parameters['Categorical thresholds']

        # Thresholds must contain 3 thresholds
        if len(thresholds) != 3:
            raise FunctionParametersError(
                'The thresholds must consist of 3 values.')

        # Thresholds must monotonically increasing
        monotonically_increasing_flag = all(
            x < y for x, y in zip(thresholds, thresholds[1:]))
        if not monotonically_increasing_flag:
            raise FunctionParametersError(
                'Each threshold should be larger than the previous.')

        # The 3 categories
        low_t = thresholds[0]
        medium_t = thresholds[1]
        high_t = thresholds[2]

        # Identify hazard and exposure layers
        hazard_layer = self.hazard    # Categorised Hazard
        exposure_layer = self.exposure  # Population Raster

        # Extract data as numeric arrays
        hazard_data = hazard_layer.get_data(nan=True)  # Category
        no_data_warning = False
        if has_no_data(hazard_data):
            no_data_warning = True

        # Calculate impact as population exposed to each category
        exposure_data = exposure_layer.get_data(nan=True, scaling=True)
        if has_no_data(exposure_data):
            no_data_warning = True

        # Make 3 data for each zone. Get the value of the exposure if the
        # exposure is in the hazard zone, else just assign 0
        low_exposure = numpy.where(hazard_data < low_t, exposure_data, 0)
        medium_exposure = numpy.where(
            (hazard_data >= low_t) & (hazard_data < medium_t),
            exposure_data, 0)
        high_exposure = numpy.where(
            (hazard_data >= medium_t) & (hazard_data <= high_t),
            exposure_data, 0)
        impacted_exposure = low_exposure + medium_exposure + high_exposure

        # Count totals
        total = int(numpy.nansum(exposure_data))
        low_total = int(numpy.nansum(low_exposure))
        medium_total = int(numpy.nansum(medium_exposure))
        high_total = int(numpy.nansum(high_exposure))
        total_impact = high_total + medium_total + low_total

        # Check for zero impact
        if total_impact == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People impacted'),
                     '%s' % format_int(total_impact)], header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        # Don't show digits less than a 1000
        total = population_rounding(total)
        total_impact = population_rounding(total_impact)
        low_total = population_rounding(low_total)
        medium_total = population_rounding(medium_total)
        high_total = population_rounding(high_total)

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        table_body = self._tabulate(
            high_total, low_total, medium_total, self.question, total_impact)

        impact_table = Table(table_body).toNewlineFreeString()

        table_body, total_needs = self._tabulate_notes(
            minimum_needs, table_body, total, total_impact, no_data_warning)

        impact_summary = Table(table_body).toNewlineFreeString()
        map_title = tr('People in each hazard areas (low, medium, high)')

        # Style for impact layer
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impacted_exposure.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # Create raster object and return
        raster_layer = Raster(
            data=impacted_exposure,
            projection=hazard_layer.get_projection(),
            geotransform=hazard_layer.get_geotransform(),
            name=tr('Population might %s') % (
                self.impact_function_manager.
                get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'total_needs': total_needs},
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer
Esempio n. 46
0
    def run(self):
        """Run volcano point population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """
        self.validate()
        self.prepare()

        self.provenance.append_step(
            'Calculating Step', 'Impact function is calculating the impact.')

        # Parameters
        radii = self.parameters['distances'].value

        # Get parameters from layer's keywords
        volcano_name_attribute = self.hazard.keyword('volcano_name_field')

        # Input checks
        if not self.hazard.layer.is_point_data:
            msg = (
                'Input hazard must be a polygon or point layer. I got %s with '
                'layer type %s' %
                (self.hazard.name, self.hazard.layer.get_geometry_name()))
            raise Exception(msg)

        data_table = self.hazard.layer.get_data()

        # Use concentric circles
        category_title = 'Radius'

        centers = self.hazard.layer.get_geometry()
        hazard_layer = buffer_points(centers,
                                     radii,
                                     category_title,
                                     data_table=data_table)

        # Get names of volcanoes considered
        if volcano_name_attribute in hazard_layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in data_table:
                volcano_name_list.append(row[volcano_name_attribute])

            volcano_names = ''
            for radius in volcano_name_list:
                volcano_names += '%s, ' % radius
            self.volcano_names = volcano_names[:-2]  # Strip trailing ', '

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                hazard_layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Initialise affected population per categories
        for radius in radii:
            category = 'Radius %s km ' % format_int(radius)
            self.affected_population[category] = 0

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True
        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this category
                category = 'Radius %s km ' % format_int(row[category_title])
                self.affected_population[category] += population

        # Count totals
        self.total_population = population_rounding(
            int(numpy.nansum(self.exposure.layer.get_data())))

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]

        impact_table = impact_summary = self.html_report()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by the buffered point volcano')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())

        # Create vector layer and return
        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'target_field': self.target_field,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title,
            'total_needs': self.total_needs
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People affected by the buffered point volcano'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 47
0
    def run(self, layers):
        """Plugin for impact of population as derived by classified hazard.

        Input
        :param layers: List of layers expected to contain

              * hazard_layer: Raster layer of classified hazard
              * exposure_layer: Raster layer of population data

        Counts number of people exposed to each class of the hazard

        Return
          Map of population exposed to high class
          Table with number of people in each class
        """

        # The 3 classes
        low_t = self.parameters['low_hazard_class']
        medium_t = self.parameters['medium_hazard_class']
        high_t = self.parameters['high_hazard_class']

        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Classified Hazard
        exposure_layer = get_exposure_layer(layers)  # Population Raster

        question = get_question(hazard_layer.get_name(),
                                exposure_layer.get_name(), self)

        # Extract data as numeric arrays
        data = hazard_layer.get_data(nan=0.0)  # Class

        # Calculate impact as population exposed to each class
        population = exposure_layer.get_data(nan=0.0, scaling=True)
        if high_t == 0:
            hi = numpy.where(0, population, 0)
        else:
            hi = numpy.where(data == high_t, population, 0)
        if medium_t == 0:
            med = numpy.where(0, population, 0)
        else:
            med = numpy.where(data == medium_t, population, 0)
        if low_t == 0:
            lo = numpy.where(0, population, 0)
        else:
            lo = numpy.where(data == low_t, population, 0)
        if high_t == 0:
            impact = numpy.where((data == low_t) + (data == medium_t),
                                 population, 0)
        elif medium_t == 0:
            impact = numpy.where((data == low_t) + (data == high_t),
                                 population, 0)
        elif low_t == 0:
            impact = numpy.where((data == medium_t) + (data == high_t),
                                 population, 0)
        else:
            impact = numpy.where(
                (data == low_t) + (data == medium_t) + (data == high_t),
                population, 0)

        # Count totals
        total = int(numpy.sum(population))
        high = int(numpy.sum(hi))
        medium = int(numpy.sum(med))
        low = int(numpy.sum(lo))
        total_impact = int(numpy.sum(impact))

        # Perform population rounding based on number of people
        no_impact = population_rounding(total - total_impact)
        total = population_rounding(total)
        total_impact = population_rounding(total_impact)
        high = population_rounding(high)
        medium = population_rounding(medium)
        low = population_rounding(low)

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        table_body = [
            question,
            TableRow([
                tr('Total Population Affected '),
                '%s' % format_int(total_impact)
            ],
                     header=True),
            TableRow([
                tr('Population in High hazard class areas '),
                '%s' % format_int(high)
            ]),
            TableRow([
                tr('Population in Medium hazard class areas '),
                '%s' % format_int(medium)
            ]),
            TableRow([
                tr('Population in Low hazard class areas '),
                '%s' % format_int(low)
            ]),
            TableRow(
                [tr('Population Not Affected'),
                 '%s' % format_int(no_impact)]),
            TableRow(
                tr('Table below shows the minimum needs for all '
                   'evacuated people'))
        ]

        total_needs = evacuated_population_needs(total_impact, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(
                TableRow([
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                         header=True))
            for resource in needs:
                table_body.append(
                    TableRow([
                        tr(resource['table name']),
                        format_int(resource['amount'])
                    ]))

        impact_table = Table(table_body).toNewlineFreeString()

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(
            TableRow(
                tr('If yes, where are they located and how will we distribute '
                   'them?')))
        table_body.append(
            TableRow(
                tr('If no, where can we obtain additional relief items from '
                   'and how will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Map shows the numbers of people in high, medium, and low '
               'hazard class areas'),
            tr('Total population: %s') % format_int(total)
        ])
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 30
            else:
                transparency = 30
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Population affected by each class')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Number of People')

        # Create raster object and return
        raster_layer = Raster(impact,
                              projection=hazard_layer.get_projection(),
                              geotransform=hazard_layer.get_geotransform(),
                              name=tr('Population which %s') %
                              (get_function_title(self).lower()),
                              keywords={
                                  'impact_summary': impact_summary,
                                  'impact_table': impact_table,
                                  'map_title': map_title,
                                  'legend_notes': legend_notes,
                                  'legend_units': legend_units,
                                  'legend_title': legend_title,
                                  'total_needs': total_needs
                              },
                              style_info=style_info)
        return raster_layer
    def run(self, layers):
        """Risk plugin for flood population evacuation

        Input
          layers: List of layers expected to contain
              my_hazard: Raster layer of flood depth
              my_exposure: Raster layer of population data on the same grid
              as my_hazard

        Counts number of people exposed to flood levels exceeding
        specified threshold.

        Return
          Map of population exposed to flood levels exceeding the threshold
          Table with number of people evacuated and supplies required
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Flood inundation [m]
        my_exposure = get_exposure_layer(layers)

        question = get_question(my_hazard.get_name(), my_exposure.get_name(),
                                self)

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds [m]']

        verify(isinstance(thresholds, list),
               'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays
        D = my_hazard.get_data(nan=0.0)  # Depth

        # Calculate impact as population exposed to depths > max threshold
        P = my_exposure.get_data(nan=0.0, scaling=True)

        # Calculate impact to intermediate thresholds
        counts = []
        # merely initialize
        my_impact = None
        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                my_impact = M = numpy.where(D >= lo, P, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                M = numpy.where((D >= lo) * (D < hi), P, 0)

            # Count
            val = int(numpy.sum(M))

            # Don't show digits less than a 1000
            val = round_thousand(val)
            counts.append(val)

        # Count totals
        evacuated = counts[-1]
        total = int(numpy.sum(P))
        # Don't show digits less than a 1000
        total = round_thousand(total)

        # Calculate estimated minimum needs
        # The default value of each logistic is based on BNPB Perka 7/2008
        # minimum bantuan
        minimum_needs = self.parameters['minimum needs']
        mn_rice = minimum_needs['Rice']
        mn_drinking_water = minimum_needs['Drinking Water']
        mn_water = minimum_needs['Water']
        mn_family_kits = minimum_needs['Family Kits']
        mn_toilets = minimum_needs['Toilets']

        rice = int(evacuated * mn_rice)
        drinking_water = int(evacuated * mn_drinking_water)
        water = int(evacuated * mn_water)
        family_kits = int(evacuated * mn_family_kits)
        toilets = int(evacuated * mn_toilets)

        # Generate impact report for the pdf map
        table_body = [
            question,
            TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                      '%s*' % format_int(evacuated)],
                     header=True),
            TableRow(tr('* Number is rounded to the nearest 1000'),
                     header=False),
            TableRow(tr('Map shows population density needing evacuation')),
            TableRow([tr('Needs per week'), tr('Total')], header=True),
            [tr('Rice [kg]'), format_int(rice)],
            [tr('Drinking Water [l]'),
             format_int(drinking_water)],
            [tr('Clean Water [l]'), format_int(water)],
            [tr('Family Kits'), format_int(family_kits)],
            [tr('Toilets'), format_int(toilets)]
        ]

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(
            TableRow(
                tr('If yes, where are they located and how '
                   'will we distribute them?')))
        table_body.append(
            TableRow(
                tr('If no, where can we obtain additional relief items from and how '
                   'will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if flood levels exceed %(eps).1f m') % {
                'eps': thresholds[-1]
            },
            tr('Minimum needs are defined in BNPB regulation 7/2008'),
            tr('All values are rounded up to the nearest integer in order to '
               'avoid representing human lives as fractionals.')
        ])

        if len(counts) > 1:
            table_body.append(TableRow(tr('Detailed breakdown'), header=True))

            for i, val in enumerate(counts[:-1]):
                s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i')
                     % {
                         'lo': thresholds[i],
                         'hi': thresholds[i + 1],
                         'val': format_int(val)
                     })
                table_body.append(TableRow(s, header=False))

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(my_impact) == 0 == numpy.nanmin(my_impact):
            table_body = [
                question,
                TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                          '%s' % format_int(evacuated)],
                         header=True)
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(my_impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population density')

        # Create raster object and return
        R = Raster(my_impact,
                   projection=my_hazard.get_projection(),
                   geotransform=my_hazard.get_geotransform(),
                   name=tr('Population which %s') % get_function_title(self),
                   keywords={
                       'impact_summary': impact_summary,
                       'impact_table': impact_table,
                       'map_title': map_title,
                       'legend_notes': legend_notes,
                       'legend_units': legend_units,
                       'legend_title': legend_title
                   },
                   style_info=style_info)
        return R
Esempio n. 49
0
    def run(self):
        """Plugin for impact of population as derived by classified hazard.

        Counts number of people exposed to each class of the hazard

        :returns: Map of population exposed to high class
            Table with number of people in each class
        """

        # The 3 classes
        # TODO (3.2): shouldnt these be defined in keywords rather? TS
        categorical_hazards = self.parameters['Categorical hazards'].value
        low_class = categorical_hazards[0].value
        medium_class = categorical_hazards[1].value
        high_class = categorical_hazards[2].value

        # The classes must be different to each other
        unique_classes_flag = all(x != y for x, y in list(
            itertools.combinations([low_class, medium_class, high_class], 2)))
        if not unique_classes_flag:
            raise FunctionParametersError(
                'There is hazard class that has the same value with other '
                'class. Please check the parameters.')

        # Extract data as numeric arrays
        hazard_data = self.hazard.layer.get_data(nan=True)  # Class
        if has_no_data(hazard_data):
            self.no_data_warning = True

        # Calculate impact as population exposed to each class
        population = self.exposure.layer.get_data(scaling=True)

        # Get all population data that falls in each hazard class
        high_hazard_population = numpy.where(hazard_data == high_class,
                                             population, 0)
        medium_hazard_population = numpy.where(hazard_data == medium_class,
                                               population, 0)
        low_hazard_population = numpy.where(hazard_data == low_class,
                                            population, 0)
        affected_population = (high_hazard_population +
                               medium_hazard_population +
                               low_hazard_population)

        # Carry the no data values forward to the impact layer.
        affected_population = numpy.where(numpy.isnan(population), numpy.nan,
                                          affected_population)
        affected_population = numpy.where(numpy.isnan(hazard_data), numpy.nan,
                                          affected_population)

        # Count totals
        self.total_population = int(numpy.nansum(population))
        self.affected_population[tr('Population in low hazard zone')] = int(
            numpy.nansum(low_hazard_population))
        self.affected_population[tr('Population in medium hazard zone')] = int(
            numpy.nansum(medium_hazard_population))
        self.affected_population[tr('Population in high hazard zone')] = int(
            numpy.nansum(high_hazard_population))
        self.unaffected_population = (self.total_population -
                                      self.total_affected_population)

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        self.minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        total_needs = self.total_needs

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(affected_population.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title'),
            'total_needs': total_needs
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        impact_layer = Raster(
            data=affected_population,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 50
0
    def run(self):
        """Risk plugin for flood population evacuation.

        Counts number of people exposed to flood levels exceeding
        specified threshold.

        :returns: Map of population exposed to flood levels exceeding the
            threshold. Table with number of people evacuated and supplies
            required.
        :rtype: tuple
        """
        self.validate()
        self.prepare()

        self.provenance.append_step(
            'Calculating Step', 'Impact function is calculating the impact.')

        # Determine depths above which people are regarded affected [m]
        # Use thresholds from inundation layer if specified
        thresholds = self.parameters['thresholds'].value

        verify(isinstance(thresholds, list),
               'Expected thresholds to be a list. Got %s' % str(thresholds))

        # Extract data as numeric arrays

        data = self.hazard.layer.get_data(nan=True)  # Depth
        if has_no_data(data):
            self.no_data_warning = True

        # Calculate impact as population exposed to depths > max threshold
        population = self.exposure.layer.get_data(nan=True, scaling=True)
        total = int(numpy.nansum(population))
        if has_no_data(population):
            self.no_data_warning = True

        # merely initialize
        impact = None

        for i, lo in enumerate(thresholds):
            if i == len(thresholds) - 1:
                # The last threshold
                thresholds_name = tr('People in >= %.1f m of water') % lo
                self.impact_category_ordering.append(thresholds_name)
                self._evacuation_category = thresholds_name
                impact = medium = numpy.where(data >= lo, population, 0)
            else:
                # Intermediate thresholds
                hi = thresholds[i + 1]
                thresholds_name = tr('People in %.1f m to %.1f m of water' %
                                     (lo, hi))
                self.impact_category_ordering.append(thresholds_name)
                medium = numpy.where((data >= lo) * (data < hi), population, 0)

            # Count
            val = int(numpy.nansum(medium))
            self.affected_population[thresholds_name] = val

        # Put the deepest area in top #2385
        self.impact_category_ordering.reverse()

        self.total_population = total
        self.unaffected_population = total - self.total_affected_population

        # Carry the no data values forward to the impact layer.
        impact = numpy.where(numpy.isnan(population), numpy.nan, impact)
        impact = numpy.where(numpy.isnan(data), numpy.nan, impact)

        # Count totals
        evacuated = self.total_evacuated

        self.minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Result
        impact_summary = self.html_report()
        impact_table = impact_summary

        total_needs = self.total_needs

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_title = tr('Population Count')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title,
            'evacuated': evacuated,
            'total_needs': total_needs
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        raster = Raster(
            impact,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=tr('Population which %s') %
            (self.impact_function_manager.get_function_title(self).lower()),
            keywords=impact_layer_keywords,
            style_info=style_info)
        self._impact = raster
        return raster
Esempio n. 51
0
    def run(self):
        """Run classified population evacuation Impact Function.

        Counts number of people exposed to each hazard zones.

        :returns: Map of population exposed to each hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
        """
        self.validate()
        self.prepare()

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')

        # Input checks
        msg = ('Input hazard must be a polygon layer. I got %s with '
               'layer type %s' % (
                   self.hazard.name, self.hazard.layer.get_geometry_name()))
        if not self.hazard.layer.is_polygon_data:
            raise Exception(msg)

        # Check if hazard_class_attribute exists in hazard_layer
        if (self.hazard_class_attribute not in
                self.hazard.layer.get_attribute_names()):
            msg = ('Hazard data %s does not contain expected hazard '
                   'zone attribute "%s". Please change it in the option. ' %
                   (self.hazard.name, self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Get unique hazard zones from the layer attribute
        self.hazard_zones = list(
            set(self.hazard.layer.get_data(self.hazard_class_attribute)))

        # Interpolated layer represents grid cell that lies in the polygon
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Initialise total population affected by each hazard zone
        for hazard_zone in self.hazard_zones:
            self.affected_population[hazard_zone] = 0

        # Count total affected population per hazard zone
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_zone = row[self.hazard_class_attribute]
                self.affected_population[hazard_zone] += population

        # Count total population from exposure layer
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))

        # Count total affected population
        total_affected_population = self.total_affected_population
        self.unaffected_population = (
            self.total_population - total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        # check for zero impact
        if total_affected_population == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People impacted'),
                     '%s' % format_int(total_affected_population)],
                    header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        impact_table = impact_summary = self.generate_html_report()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People impacted by each hazard zone')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People impacted by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 52
0
    def run(self):
        """Run volcano population evacuation Impact Function.

        Counts number of people exposed to volcano event.

        :returns: Map of population exposed to the volcano hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
            * RadiiException - When radii are not valid (they need to be
                monotonically increasing)
        """
        self.validate()
        self.prepare()

        self.provenance.append_step(
            'Calculating Step', 'Impact function is calculating the impact.')

        # Parameters
        self.hazard_class_attribute = self.hazard.keyword('field')
        name_attribute = self.hazard.keyword('volcano_name_field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')

        if has_no_data(self.exposure.layer.get_data(nan=True)):
            self.no_data_warning = True

        # Input checks
        if not self.hazard.layer.is_polygon_data:
            message = tr(
                'Input hazard must be a polygon layer. I got %s with layer '
                'type %s' % (self.hazard.layer.get_name(),
                             self.hazard.layer.get_geometry_name()))
            raise Exception(message)

        # Check if hazard_class_attribute exists in hazard_layer
        if (self.hazard_class_attribute
                not in self.hazard.layer.get_attribute_names()):
            message = tr(
                'Hazard data %s did not contain expected attribute '
                '%s ' %
                (self.hazard.layer.get_name(), self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        features = self.hazard.layer.get_data()

        # Get names of volcanoes considered
        if name_attribute in self.hazard.layer.get_attribute_names():
            volcano_name_list = []
            # Run through all polygons and get unique names
            for row in features:
                volcano_name_list.append(row[name_attribute])

            self.volcano_names = ', '.join(set(volcano_name_list))

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Initialize OrderedDict of affected buildings
        self.affected_population = OrderedDict()
        # Iterate over vector hazard classes
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                self.affected_population[vector_hazard_class['name']] = 0

        # Run interpolation function for polygon2raster
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field)

        # Count affected population per polygon and total
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_value = get_key_for_value(
                    row[self.hazard_class_attribute],
                    self.hazard_class_mapping)
                if not hazard_value:
                    hazard_value = self._not_affected_value
                self.affected_population[hazard_value] += population

        # Count totals
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))
        self.unaffected_population = (self.total_population -
                                      self.total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]

        impact_table = impact_summary = self.html_report()

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People affected by Volcano Hazard Zones')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'target_field': self.target_field,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title,
            'total_needs': self.total_needs
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People affected by volcano hazard zones'),
            keywords=impact_layer_keywords,
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
Esempio n. 53
0
    def run(self, layers):
        """Risk plugin for volcano hazard on building/structure

        Input
          layers: List of layers expected to contain
              my_hazard: Hazard layer of volcano
              my_exposure: Vector layer of structure data on
              the same grid as my_hazard

        Counts number of building exposed to each volcano hazard zones.

        Return
          Map of building exposed to volcanic hazard zones
          Table with number of buildings affected
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Volcano hazard layer
        my_exposure = get_exposure_layer(layers)
        is_point_data = False

        question = get_question(my_hazard.get_name(), my_exposure.get_name(),
                                self)

        # Input checks
        if not my_hazard.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected ' %
                   my_hazard.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon or point layer. I got %s '
               'with layer type %s' %
               (my_hazard.get_name(), my_hazard.get_geometry_name()))
        if not (my_hazard.is_polygon_data or my_hazard.is_point_data):
            raise Exception(msg)

        if my_hazard.is_point_data:
            # Use concentric circles
            radii = self.parameters['distances [km]']
            is_point_data = True

            centers = my_hazard.get_geometry()
            attributes = my_hazard.get_data()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            Z = make_circular_polygon(centers, rad_m, attributes=attributes)
            # To check
            category_title = 'Radius'
            my_hazard = Z

            category_names = rad_m
            name_attribute = 'NAME'  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = 'KRB'

            # FIXME (Ole): Change to English and use translation system
            category_names = [
                'Kawasan Rawan Bencana III', 'Kawasan Rawan Bencana II',
                'Kawasan Rawan Bencana I'
            ]
            name_attribute = 'GUNUNG'  # As in e.g. BNPB hazard map

        # Get names of volcanos considered
        if name_attribute in my_hazard.get_attribute_names():
            D = {}
            for att in my_hazard.get_data():
                # Run through all polygons and get unique names
                D[att[name_attribute]] = None

            volcano_names = ''
            for name in D:
                volcano_names += '%s, ' % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr('Not specified in data')

        if not category_title in my_hazard.get_attribute_names():
            msg = ('Hazard data %s did not contain expected '
                   'attribute %s ' % (my_hazard.get_name(), category_title))
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(my_hazard, my_exposure)

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a building count of zero
        new_attributes = my_hazard.get_data()

        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            cat = attr[category_title]
            categories[cat] = 0

        # Count impacted building per polygon and total
        for attr in P.get_data():

            # Update building count for associated polygon
            poly_id = attr['polygon_id']
            if poly_id is not None:
                new_attributes[poly_id][self.target_field] += 1

                # Update building count for each category
                cat = new_attributes[poly_id][category_title]
                categories[cat] += 1

        # Count totals
        total = len(my_exposure)

        # Generate simple impact report
        blank_cell = ''
        table_body = [
            question,
            TableRow(
                [tr('Volcanos considered'),
                 '%s' % volcano_names, blank_cell],
                header=True),
            TableRow([tr('Distance [km]'),
                      tr('Total'),
                      tr('Cumulative')],
                     header=True)
        ]

        cum = 0
        for name in category_names:
            # prevent key error
            count = categories.get(name, 0)
            cum += count
            if is_point_data:
                name = int(name) / 1000
            table_body.append(
                TableRow([name, format_int(count),
                          format_int(cum)]))

        table_body.append(
            TableRow(
                tr('Map shows buildings affected in '
                   'each of volcano hazard polygons.')))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total number of buildings %s in the viewable '
               'area') % format_int(total),
            tr('Only buildings available in OpenStreetMap '
               'are considered.')
        ])

        impact_summary = Table(table_body).toNewlineFreeString()
        building_counts = [x[self.target_field] for x in new_attributes]

        if max(building_counts) == 0 == min(building_counts):
            table_body = [
                question,
                TableRow([
                    tr('Number of buildings affected'),
                    '%s' % format_int(cum), blank_cell
                ],
                         header=True)
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(building_counts, len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 30
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(building)')
        legend_title = tr('Building count')

        # Create vector layer and return
        V = Vector(data=new_attributes,
                   projection=my_hazard.get_projection(),
                   geometry=my_hazard.get_geometry(as_geometry_objects=True),
                   name=tr('Buildings affected by volcanic hazard zone'),
                   keywords={
                       'impact_summary': impact_summary,
                       'impact_table': impact_table,
                       'target_field': self.target_field,
                       'map_title': map_title,
                       'legend_notes': legend_notes,
                       'legend_units': legend_units,
                       'legend_title': legend_title
                   },
                   style_info=style_info)
        return V
    def run(self, layers):
        """Risk plugin for flood population evacuation

        Input:
          layers: List of layers expected to contain

              my_hazard : Vector polygon layer of flood depth

              my_exposure : Raster layer of population data on the same
                grid as my_hazard

        Counts number of people exposed to areas identified as flood prone

        Return
          Map of population exposed to flooding

          Table with number of people evacuated and supplies required
        """
        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Flood inundation
        my_exposure = get_exposure_layer(layers)

        question = get_question(my_hazard.get_name(),
                                my_exposure.get_name(),
                                self)

        # Check that hazard is polygon type
        if not my_hazard.is_vector:
            msg = ('Input hazard %s  was not a vector layer as expected '
                   % my_hazard.get_name())
            raise Exception(msg)

        msg = ('Input hazard must be a polygon layer. I got %s with layer '
               'type %s' % (my_hazard.get_name(),
                            my_hazard.get_geometry_name()))
        if not my_hazard.is_polygon_data:
            raise Exception(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(my_hazard, my_exposure,
                                                  attribute_name='population')

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a population count of zero
        new_attributes = my_hazard.get_data()
        category_title = 'affected'  # FIXME: Should come from keywords
        deprecated_category_title = 'FLOODPRONE'
        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            try:
                cat = attr[category_title]
            except KeyError:
                cat = attr['FLOODPRONE']
            categories[cat] = 0

        # Count affected population per polygon, per category and total
        affected_population = 0
        for attr in P.get_data():

            affected = False
            if 'affected' in attr:
                res = attr['affected']
                if res is None:
                    x = False
                else:
                    x = bool(res)
                affected = x
            elif 'FLOODPRONE' in attr:
                # If there isn't an 'affected' attribute,
                res = attr['FLOODPRONE']
                if res is not None:
                    affected = res.lower() == 'yes'
            elif 'Affected' in attr:
                # Check the default attribute assigned for points
                # covered by a polygon
                res = attr['Affected']
                if res is None:
                    x = False
                else:
                    x = res
                affected = x
            else:
                # there is no flood related attribute
                msg = ('No flood related attribute found in %s. '
                       'I was looking fore either "Flooded", "FLOODPRONE" '
                       'or "Affected". The latter should have been '
                       'automatically set by call to '
                       'assign_hazard_values_to_exposure_data(). '
                       'Sorry I can\'t help more.')
                raise Exception(msg)

            if affected:
                # Get population at this location
                pop = float(attr['population'])

                # Update population count for associated polygon
                poly_id = attr['polygon_id']
                new_attributes[poly_id][self.target_field] += pop

                # Update population count for each category
                try:
                    cat = new_attributes[poly_id][category_title]
                except KeyError:
                    cat = new_attributes[poly_id][deprecated_category_title]
                categories[cat] += pop

                # Update total
                affected_population += pop

        affected_population = round_thousand(affected_population)
        # Estimate number of people in need of evacuation
        evacuated = (affected_population *
                     self.parameters['evacuation_percentage']
                     / 100.0)

        total = int(numpy.sum(my_exposure.get_data(nan=0, scaling=False)))

        # Don't show digits less than a 1000
        total = round_thousand(total)
        evacuated = round_thousand(evacuated)

        # Calculate estimated minimum needs
        minimum_needs = self.parameters['minimum needs']
        tot_needs = evacuated_population_weekly_needs(evacuated, minimum_needs)

        # Generate impact report for the pdf map
        table_body = [question,
                      TableRow([tr('People affected'),
                                '%s%s' % (format_int(int(affected_population)),
                                          ('*' if affected_population >= 1000
                                           else ''))],
                               header=True),
                      TableRow([tr('People needing evacuation'),
                                '%s%s' % (format_int(int(evacuated)),
                                          ('*' if evacuated >= 1000 else ''))],
                               header=True),
                      TableRow([
                          TableCell(
                              tr('* Number is rounded to the nearest 1000'),
                              col_span=2)],
                          header=False),
                      TableRow([tr('Evacuation threshold'),
                                '%s%%' % format_int(
                                    self.parameters['evacuation_percentage'])],
                               header=True),
                      TableRow(tr('Map shows population affected in each flood'
                                  ' prone area')),
                      TableRow(tr('Table below shows the weekly minium needs '
                                  'for all evacuated people')),
                      TableRow([tr('Needs per week'), tr('Total')],
                               header=True),
                      [tr('Rice [kg]'), format_int(tot_needs['rice'])],
                      [tr('Drinking Water [l]'),
                       format_int(tot_needs['drinking_water'])],
                      [tr('Clean Water [l]'), format_int(tot_needs['water'])],
                      [tr('Family Kits'), format_int(tot_needs[
                          'family_kits'])],
                      [tr('Toilets'), format_int(tot_needs['toilets'])]]
        impact_table = Table(table_body).toNewlineFreeString()

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(TableRow(tr('If yes, where are they located and how '
                                      'will we distribute them?')))
        table_body.append(TableRow(tr('If no, where can we obtain additional '
                                      'relief items from and how will we '
                                      'transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total population: %s') % format_int(total),
                           tr('People need evacuation if in area identified '
                              'as "Flood Prone"'),
                           tr('Minimum needs are defined in BNPB '
                              'regulation 7/2008')])
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        # Define classes for legend for flooded population counts
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        population_counts = [x['population'] for x in new_attributes]
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)

        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class['min'] = 0
            else:
                transparency = 0
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people per polygon)')
        legend_title = tr('Population Count')

        # Create vector layer and return
        V = Vector(data=new_attributes,
                   projection=my_hazard.get_projection(),
                   geometry=my_hazard.get_geometry(),
                   name=tr('Population affected by flood prone areas'),
                   keywords={'impact_summary': impact_summary,
                             'impact_table': impact_table,
                             'target_field': self.target_field,
                             'map_title': map_title,
                             'legend_notes': legend_notes,
                             'legend_units': legend_units,
                             'legend_title': legend_title},
                   style_info=style_info)
        return V
Esempio n. 55
0
    def run(self, layers=None):
        """Plugin for impact of population as derived by classified hazard.

        Input
        :param layers: List of layers expected to contain

              * hazard_layer: Raster layer of classified hazard
              * exposure_layer: Raster layer of population data

        Counts number of people exposed to each class of the hazard

        Return
          Map of population exposed to high class
          Table with number of people in each class
        """
        self.validate()
        self.prepare(layers)

        # The 3 classes
        # TODO (3.2): shouldnt these be defined in keywords rather? TS
        low_class = self.parameters['low_hazard_class']
        medium_class = self.parameters['medium_hazard_class']
        high_class = self.parameters['high_hazard_class']

        # The classes must be different to each other
        unique_classes_flag = all(
            x != y for x, y in list(
                itertools.combinations(
                    [low_class, medium_class, high_class], 2)))
        if not unique_classes_flag:
            raise FunctionParametersError(
                'There is hazard class that has the same value with other '
                'class. Please check the parameters.')

        # Identify hazard and exposure layers
        hazard_layer = self.hazard  # Classified Hazard
        exposure_layer = self.exposure  # Population Raster

        # Extract data as numeric arrays
        hazard_data = hazard_layer.get_data(nan=True)  # Class
        no_data_warning = False
        if has_no_data(hazard_data):
            no_data_warning = True

        # Calculate impact as population exposed to each class
        population = exposure_layer.get_data(scaling=True)

        # Get all population data that falls in each hazard class
        high_hazard_population = numpy.where(
            hazard_data == high_class, population, 0)
        medium_hazard_population = numpy.where(
            hazard_data == medium_class, population, 0)
        low_hazard_population = numpy.where(
            hazard_data == low_class, population, 0)
        affected_population = (
            high_hazard_population + medium_hazard_population +
            low_hazard_population)

        # Carry the no data values forward to the impact layer.
        affected_population = numpy.where(
            numpy.isnan(population),
            numpy.nan,
            affected_population)
        affected_population = numpy.where(
            numpy.isnan(hazard_data),
            numpy.nan,
            affected_population)

        # Count totals
        total_population = int(numpy.nansum(population))
        total_high_population = int(numpy.nansum(high_hazard_population))
        total_medium_population = int(numpy.nansum(medium_hazard_population))
        total_low_population = int(numpy.nansum(low_hazard_population))
        total_affected = int(numpy.nansum(affected_population))
        total_not_affected = total_population - total_affected

        # check for zero impact
        if total_affected == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People affected'),
                     '%s' % format_int(total_affected)], header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        table_body, total_needs = self._tabulate(
            population_rounding(total_high_population),
            population_rounding(total_low_population),
            population_rounding(total_medium_population),
            minimum_needs,
            population_rounding(total_not_affected),
            self.question,
            population_rounding(total_affected))

        impact_table = Table(table_body).toNewlineFreeString()

        table_body = self._tabulate_action_checklist(
            table_body,
            population_rounding(total_population),
            no_data_warning)
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(affected_population.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Population affected by each class')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Number of People')

        # Create raster object and return
        raster_layer = Raster(
            data=affected_population,
            projection=exposure_layer.get_projection(),
            geotransform=exposure_layer.get_geotransform(),
            name=tr('Population which %s') % (
                self.impact_function_manager
                .get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs},
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer
    def run(self, layers):
        """Risk plugin for flood population evacuation.

        :param layers: List of layers expected to contain

            * hazard_layer : Vector polygon layer of flood depth
            * exposure_layer : Raster layer of population data on the same grid
                as hazard_layer

        Counts number of people exposed to areas identified as flood prone

        :returns: Map of population exposed to flooding Table with number of
            people evacuated and supplies required.
        :rtype: tuple
        """
        # Identify hazard and exposure layers
        hazard_layer = get_hazard_layer(layers)  # Flood inundation
        exposure_layer = get_exposure_layer(layers)

        question = get_question(hazard_layer.get_name(),
                                exposure_layer.get_name(), self)

        # Check that hazard is polygon type
        if not hazard_layer.is_vector:
            message = ('Input hazard %s  was not a vector layer as expected ' %
                       hazard_layer.get_name())
            raise Exception(message)

        message = (
            'Input hazard must be a polygon layer. I got %s with layer type '
            '%s' % (hazard_layer.get_name(), hazard_layer.get_geometry_name()))
        if not hazard_layer.is_polygon_data:
            raise Exception(message)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(hazard_layer,
                                                  exposure_layer,
                                                  attribute_name='population')

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a population count of zero
        new_attributes = hazard_layer.get_data()
        category_title = 'affected'  # FIXME: Should come from keywords
        deprecated_category_title = 'FLOODPRONE'
        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            try:
                cat = attr[category_title]
            except KeyError:
                try:
                    cat = attr['FLOODPRONE']
                    categories[cat] = 0
                except KeyError:
                    pass

        # Count affected population per polygon, per category and total
        affected_population = 0
        for attr in P.get_data():

            affected = False
            if 'affected' in attr:
                res = attr['affected']
                if res is None:
                    x = False
                else:
                    x = bool(res)
                affected = x
            elif 'FLOODPRONE' in attr:
                # If there isn't an 'affected' attribute,
                res = attr['FLOODPRONE']
                if res is not None:
                    affected = res.lower() == 'yes'
            elif 'Affected' in attr:
                # Check the default attribute assigned for points
                # covered by a polygon
                res = attr['Affected']
                if res is None:
                    x = False
                else:
                    x = res
                affected = x
            else:
                # assume that every polygon is affected (see #816)
                affected = True
                # there is no flood related attribute
                # message = ('No flood related attribute found in %s. '
                #       'I was looking for either "Flooded", "FLOODPRONE" '
                #       'or "Affected". The latter should have been '
                #       'automatically set by call to '
                #       'assign_hazard_values_to_exposure_data(). '
                #       'Sorry I can\'t help more.')
                # raise Exception(message)

            if affected:
                # Get population at this location
                pop = float(attr['population'])

                # Update population count for associated polygon
                poly_id = attr['polygon_id']
                new_attributes[poly_id][self.target_field] += pop

                # Update population count for each category
                if len(categories) > 0:
                    try:
                        cat = new_attributes[poly_id][category_title]
                    except KeyError:
                        cat = new_attributes[poly_id][
                            deprecated_category_title]
                    categories[cat] += pop

                # Update total
                affected_population += pop

        # Estimate number of people in need of evacuation
        evacuated = (affected_population *
                     self.parameters['evacuation_percentage'] / 100.0)

        affected_population, rounding = population_rounding_full(
            affected_population)

        total = int(numpy.sum(exposure_layer.get_data(nan=0, scaling=False)))

        # Don't show digits less than a 1000
        total = population_rounding(total)
        evacuated, rounding_evacuated = population_rounding_full(evacuated)

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        # Generate impact report for the pdf map
        table_body = [
            question,
            TableRow([
                tr('People affected'),
                '%s*' % (format_int(int(affected_population)))
            ],
                     header=True),
            TableRow([
                TableCell(tr('* Number is rounded up to the nearest %s') %
                          (rounding),
                          col_span=2)
            ]),
            TableRow([
                tr('People needing evacuation'),
                '%s*' % (format_int(int(evacuated)))
            ],
                     header=True),
            TableRow([
                TableCell(tr('* Number is rounded up to the nearest %s') %
                          (rounding_evacuated),
                          col_span=2)
            ]),
            TableRow([
                tr('Evacuation threshold'),
                '%s%%' % format_int(self.parameters['evacuation_percentage'])
            ],
                     header=True),
            TableRow(
                tr('Map shows the number of people affected in each flood prone '
                   'area')),
            TableRow(
                tr('Table below shows the weekly minimum needs for all '
                   'evacuated people'))
        ]
        total_needs = evacuated_population_needs(evacuated, minimum_needs)
        for frequency, needs in total_needs.items():
            table_body.append(
                TableRow([
                    tr('Needs should be provided %s' % frequency),
                    tr('Total')
                ],
                         header=True))
            for resource in needs:
                table_body.append(
                    TableRow([
                        tr(resource['table name']),
                        format_int(resource['amount'])
                    ]))

        impact_table = Table(table_body).toNewlineFreeString()

        table_body.append(TableRow(tr('Action Checklist:'), header=True))
        table_body.append(TableRow(tr('How will warnings be disseminated?')))
        table_body.append(TableRow(tr('How will we reach stranded people?')))
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(
            TableRow(
                tr('If yes, where are they located and how will we distribute '
                   'them?')))
        table_body.append(
            TableRow(
                tr('If no, where can we obtain additional relief items from and '
                   'how will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if in the area identified as '
               '"Flood Prone"'),
            tr('Minimum needs are defined in BNPB regulation 7/2008')
        ])
        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        # Define classes for legend for flooded population counts
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]

        population_counts = [x['population'] for x in new_attributes]
        classes = create_classes(population_counts, len(colours))
        interval_classes = humanize_class(classes)

        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                transparency = 0
                style_class['min'] = 0
            else:
                transparency = 0
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('People affected by flood prone areas')
        legend_notes = tr('Thousand separator is represented by \'.\'')
        legend_units = tr('(people per polygon)')
        legend_title = tr('Population Count')

        # Create vector layer and return
        vector_layer = Vector(data=new_attributes,
                              projection=hazard_layer.get_projection(),
                              geometry=hazard_layer.get_geometry(),
                              name=tr('People affected by flood prone areas'),
                              keywords={
                                  'impact_summary': impact_summary,
                                  'impact_table': impact_table,
                                  'target_field': self.target_field,
                                  'map_title': map_title,
                                  'legend_notes': legend_notes,
                                  'legend_units': legend_units,
                                  'legend_title': legend_title,
                                  'affected_population': affected_population,
                                  'total_population': total,
                                  'total_needs': total_needs
                              },
                              style_info=style_info)
        return vector_layer
Esempio n. 57
0
    def run(self):
        """Run classified population evacuation Impact Function.

        Counts number of people exposed to each hazard zones.

        :returns: Map of population exposed to each hazard zone.
            The returned dict will include a table with number of people
            evacuated and supplies required.
        :rtype: dict

        :raises:
            * Exception - When hazard layer is not vector layer
        """

        # Value from layer's keywords
        self.hazard_class_attribute = self.hazard.keyword('field')
        self.hazard_class_mapping = self.hazard.keyword('value_map')
        # TODO: Remove check to self.validate (Ismail)
        # Input checks
        message = tr(
            'Input hazard must be a polygon layer. I got %s with layer type '
            '%s' % (self.hazard.name, self.hazard.layer.get_geometry_name()))
        if not self.hazard.layer.is_polygon_data:
            raise Exception(message)

        # Check if hazard_class_attribute exists in hazard_layer
        if (self.hazard_class_attribute
                not in self.hazard.layer.get_attribute_names()):
            message = tr(
                'Hazard data %s does not contain expected hazard '
                'zone attribute "%s". Please change it in the option. ' %
                (self.hazard.name, self.hazard_class_attribute))
            # noinspection PyExceptionInherit
            raise InaSAFEError(message)

        # Retrieve the classification that is used by the hazard layer.
        vector_hazard_classification = self.hazard.keyword(
            'vector_hazard_classification')
        # Get the dictionary that contains the definition of the classification
        vector_hazard_classification = definition(vector_hazard_classification)
        # Get the list classes in the classification
        vector_hazard_classes = vector_hazard_classification['classes']
        # Initialize OrderedDict of affected buildings
        self.affected_population = OrderedDict()
        # Iterate over vector hazard classes
        for vector_hazard_class in vector_hazard_classes:
            # Check if the key of class exist in hazard_class_mapping
            if vector_hazard_class['key'] in self.hazard_class_mapping.keys():
                # Replace the key with the name as we need to show the human
                # friendly name in the report.
                self.hazard_class_mapping[vector_hazard_class['name']] = \
                    self.hazard_class_mapping.pop(vector_hazard_class['key'])
                # Adding the class name as a key in affected_building
                self.affected_population[vector_hazard_class['name']] = 0

        # Interpolated layer represents grid cell that lies in the polygon
        interpolated_layer, covered_exposure_layer = \
            assign_hazard_values_to_exposure_data(
                self.hazard.layer,
                self.exposure.layer,
                attribute_name=self.target_field
            )

        # Count total affected population per hazard zone
        for row in interpolated_layer.get_data():
            # Get population at this location
            population = row[self.target_field]
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_value = get_key_for_value(
                    row[self.hazard_class_attribute],
                    self.hazard_class_mapping)
                if not hazard_value:
                    hazard_value = self._not_affected_value
                else:
                    self.affected_population[hazard_value] += population

        # Count total population from exposure layer
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))

        # Count total affected population
        total_affected_population = self.total_affected_population
        self.unaffected_population = (self.total_population -
                                      total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in filter_needs_parameters(
                self.parameters['minimum needs'])
        ]

        # check for zero impact
        if total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(covered_exposure_layer.get_data().flat[:],
                                 len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = 0
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        impact_data = self.generate_data()

        extra_keywords = {
            'target_field': self.target_field,
            'map_title': self.map_title(),
            'legend_notes': self.metadata().key('legend_notes'),
            'legend_units': self.metadata().key('legend_units'),
            'legend_title': self.metadata().key('legend_title')
        }

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=self.map_title(),
            keywords=impact_layer_keywords,
            style_info=style_info)

        impact_layer.impact_data = impact_data
        self._impact = impact_layer
        return impact_layer
Esempio n. 58
0
    def run(self, layers):
        """Risk plugin for volcano hazard on building/structure

        Input
          layers: List of layers expected to contain
              my_hazard: Hazard layer of volcano
              my_exposure: Vector layer of structure data on
              the same grid as my_hazard

        Counts number of building exposed to each volcano hazard zones.

        Return
          Map of building exposed to volcanic hazard zones
          Table with number of buildings affected
        """

        # Identify hazard and exposure layers
        my_hazard = get_hazard_layer(layers)  # Volcano hazard layer
        my_exposure = get_exposure_layer(layers)
        is_point_data = False

        question = get_question(my_hazard.get_name(), my_exposure.get_name(), self)

        # Input checks
        if not my_hazard.is_vector:
            msg = "Input hazard %s  was not a vector layer as expected " % my_hazard.get_name()
            raise Exception(msg)

        msg = "Input hazard must be a polygon or point layer. I got %s " "with layer type %s" % (
            my_hazard.get_name(),
            my_hazard.get_geometry_name(),
        )
        if not (my_hazard.is_polygon_data or my_hazard.is_point_data):
            raise Exception(msg)

        if my_hazard.is_point_data:
            # Use concentric circles
            radii = self.parameters["distances [km]"]
            is_point_data = True

            centers = my_hazard.get_geometry()
            attributes = my_hazard.get_data()
            rad_m = [x * 1000 for x in radii]  # Convert to meters
            Z = make_circular_polygon(centers, rad_m, attributes=attributes)
            # To check
            category_title = "Radius"
            my_hazard = Z

            category_names = rad_m
            name_attribute = "NAME"  # As in e.g. the Smithsonian dataset
        else:
            # Use hazard map
            category_title = "KRB"

            # FIXME (Ole): Change to English and use translation system
            category_names = ["Kawasan Rawan Bencana III", "Kawasan Rawan Bencana II", "Kawasan Rawan Bencana I"]
            name_attribute = "GUNUNG"  # As in e.g. BNPB hazard map

        # Get names of volcanos considered
        if name_attribute in my_hazard.get_attribute_names():
            D = {}
            for att in my_hazard.get_data():
                # Run through all polygons and get unique names
                D[att[name_attribute]] = None

            volcano_names = ""
            for name in D:
                volcano_names += "%s, " % name
            volcano_names = volcano_names[:-2]  # Strip trailing ', '
        else:
            volcano_names = tr("Not specified in data")

        if not category_title in my_hazard.get_attribute_names():
            msg = "Hazard data %s did not contain expected " "attribute %s " % (my_hazard.get_name(), category_title)
            # noinspection PyExceptionInherit
            raise InaSAFEError(msg)

        # Run interpolation function for polygon2raster
        P = assign_hazard_values_to_exposure_data(my_hazard, my_exposure)

        # Initialise attributes of output dataset with all attributes
        # from input polygon and a building count of zero
        new_attributes = my_hazard.get_data()

        categories = {}
        for attr in new_attributes:
            attr[self.target_field] = 0
            cat = attr[category_title]
            categories[cat] = 0

        # Count impacted building per polygon and total
        for attr in P.get_data():

            # Update building count for associated polygon
            poly_id = attr["polygon_id"]
            if poly_id is not None:
                new_attributes[poly_id][self.target_field] += 1

                # Update building count for each category
                cat = new_attributes[poly_id][category_title]
                categories[cat] += 1

        # Count totals
        total = len(my_exposure)

        # Generate simple impact report
        blank_cell = ""
        table_body = [
            question,
            TableRow([tr("Volcanos considered"), "%s" % volcano_names, blank_cell], header=True),
            TableRow([tr("Distance [km]"), tr("Total"), tr("Cumulative")], header=True),
        ]

        cum = 0
        for name in category_names:
            # prevent key error
            count = categories.get(name, 0)
            cum += count
            if is_point_data:
                name = int(name) / 1000
            table_body.append(TableRow([name, format_int(count), format_int(cum)]))

        table_body.append(TableRow(tr("Map shows buildings affected in " "each of volcano hazard polygons.")))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend(
            [
                TableRow(tr("Notes"), header=True),
                tr("Total number of buildings %s in the viewable " "area") % format_int(total),
                tr("Only buildings available in OpenStreetMap " "are considered."),
            ]
        )

        impact_summary = Table(table_body).toNewlineFreeString()
        building_counts = [x[self.target_field] for x in new_attributes]

        if max(building_counts) == 0 == min(building_counts):
            table_body = [
                question,
                TableRow([tr("Number of buildings affected"), "%s" % format_int(cum), blank_cell], header=True),
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ["#FFFFFF", "#38A800", "#79C900", "#CEED00", "#FFCC00", "#FF6600", "#FF0000", "#7A0000"]
        classes = create_classes(building_counts, len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class["label"] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class["min"] = 0
            else:
                transparency = 30
                style_class["min"] = classes[i - 1]
            style_class["transparency"] = transparency
            style_class["colour"] = colours[i]
            style_class["max"] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type="graduatedSymbol")

        # For printing map purpose
        map_title = tr("Buildings affected by volcanic hazard zone")
        legend_notes = tr("Thousand separator is represented by %s" % get_thousand_separator())
        legend_units = tr("(building)")
        legend_title = tr("Building count")

        # Create vector layer and return
        V = Vector(
            data=new_attributes,
            projection=my_hazard.get_projection(),
            geometry=my_hazard.get_geometry(as_geometry_objects=True),
            name=tr("Buildings affected by volcanic hazard zone"),
            keywords={
                "impact_summary": impact_summary,
                "impact_table": impact_table,
                "target_field": self.target_field,
                "map_title": map_title,
                "legend_notes": legend_notes,
                "legend_units": legend_units,
                "legend_title": legend_title,
            },
            style_info=style_info,
        )
        return V
Esempio n. 59
0
    def run(self, layers=None):
        """Plugin for impact of population as derived by categorised hazard.

        :param layers: List of layers expected to contain

            * hazard_layer: Raster layer of categorised hazard
            * exposure_layer: Raster layer of population data

        Counts number of people exposed to each category of the hazard

        :returns:
          Map of population exposed to high category
          Table with number of people in each category
        """
        self.validate()
        self.prepare(layers)

        thresholds = self.parameters['Categorical thresholds']

        # Thresholds must contain 3 thresholds
        if len(thresholds) != 3:
            raise FunctionParametersError(
                'The thresholds must consist of 3 values.')

        # Thresholds must monotonically increasing
        monotonically_increasing_flag = all(
            x < y for x, y in zip(thresholds, thresholds[1:]))
        if not monotonically_increasing_flag:
            raise FunctionParametersError(
                'Each threshold should be larger than the previous.')

        # The 3 categories
        low_t = thresholds[0]
        medium_t = thresholds[1]
        high_t = thresholds[2]

        # Identify hazard and exposure layers
        hazard_layer = self.hazard  # Categorised Hazard
        exposure_layer = self.exposure  # Population Raster

        # Extract data as numeric arrays
        hazard_data = hazard_layer.get_data(nan=True)  # Category
        no_data_warning = False
        if has_no_data(hazard_data):
            no_data_warning = True

        # Calculate impact as population exposed to each category
        exposure_data = exposure_layer.get_data(nan=True, scaling=True)
        if has_no_data(exposure_data):
            no_data_warning = True

        # Make 3 data for each zone. Get the value of the exposure if the
        # exposure is in the hazard zone, else just assign 0
        low_exposure = numpy.where(hazard_data < low_t, exposure_data, 0)
        medium_exposure = numpy.where(
            (hazard_data >= low_t) & (hazard_data < medium_t), exposure_data,
            0)
        high_exposure = numpy.where(
            (hazard_data >= medium_t) & (hazard_data <= high_t), exposure_data,
            0)
        impacted_exposure = low_exposure + medium_exposure + high_exposure

        # Count totals
        total = int(numpy.nansum(exposure_data))
        low_total = int(numpy.nansum(low_exposure))
        medium_total = int(numpy.nansum(medium_exposure))
        high_total = int(numpy.nansum(high_exposure))
        total_impact = high_total + medium_total + low_total

        # Check for zero impact
        if total_impact == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People impacted'),
                     '%s' % format_int(total_impact)],
                    header=True)
            ]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        # Don't show digits less than a 1000
        total = population_rounding(total)
        total_impact = population_rounding(total_impact)
        low_total = population_rounding(low_total)
        medium_total = population_rounding(medium_total)
        high_total = population_rounding(high_total)

        minimum_needs = [
            parameter.serialize()
            for parameter in self.parameters['minimum needs']
        ]

        table_body = self._tabulate(high_total, low_total, medium_total,
                                    self.question, total_impact)

        impact_table = Table(table_body).toNewlineFreeString()

        table_body, total_needs = self._tabulate_notes(minimum_needs,
                                                       table_body, total,
                                                       total_impact,
                                                       no_data_warning)

        impact_summary = Table(table_body).toNewlineFreeString()
        map_title = tr('People in each hazard areas (low, medium, high)')

        # Style for impact layer
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00', '#FFCC00', '#FF6600',
            '#FF0000', '#7A0000'
        ]
        classes = create_classes(impacted_exposure.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # Create raster object and return
        raster_layer = Raster(
            data=impacted_exposure,
            projection=hazard_layer.get_projection(),
            geotransform=hazard_layer.get_geotransform(),
            name=tr('Population might %s') %
            (self.impact_function_manager.get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'total_needs': total_needs
            },
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer