Esempio n. 1
0
    def test_1d_linear_interpolation_basic(self):
        """Interpolation library works for a 1D linear function - basic test
        """

        # Define pixel centers along each direction
        x = [1.0, 2.0, 4.0]

        # Define array with corresponding values
        A = numpy.zeros((len(x)))

        # Define values for each xas a linear function
        for i in range(len(x)):
            A[i] = linear_function(x[i], 0)

        # Test first that original points are reproduced correctly
        for i, xi in enumerate(x):
            val = interpolate1d(x, A, [xi], mode='linear')[0]
            ref = linear_function(xi, 0)
            assert numpy.allclose(val, ref, rtol=1e-12, atol=1e-12)

        # Then test that genuinly interpolated points are correct
        xis = numpy.linspace(x[0], x[-1], 10)
        points = xis

        vals = interpolate1d(x, A, points, mode='linear')
        refs = linear_function(points, 0)
        assert numpy.allclose(vals, refs, rtol=1e-12, atol=1e-12)
Esempio n. 2
0
    def test_1d_linear_interpolation_basic(self):
        """Interpolation library works for a 1D linear function - basic test
        """

        # Define pixel centers along each direction
        x = [1.0, 2.0, 4.0]

        # Define array with corresponding values
        A = numpy.zeros((len(x)))

        # Define values for each xas a linear function
        for i in range(len(x)):
            A[i] = linear_function(x[i], 0)

        # Test first that original points are reproduced correctly
        for i, xi in enumerate(x):
            val = interpolate1d(x, A, [xi], mode='linear')[0]
            ref = linear_function(xi, 0)
            assert numpy.allclose(val, ref, rtol=1e-12, atol=1e-12)

        # Then test that genuinly interpolated points are correct
        xis = numpy.linspace(x[0], x[-1], 10)
        points = xis

        vals = interpolate1d(x, A, points, mode='linear')
        refs = linear_function(points, 0)
        assert numpy.allclose(vals, refs, rtol=1e-12, atol=1e-12)
Esempio n. 3
0
    def test_1d_constant_interpolation_basic(self):
        """Interpolation library works for 1D piecewise constant function
        """

        # Define pixel centers along each direction
        x = numpy.array([1.0, 2.0, 4.0])

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x)))

        # Define values for each x, y pair as a linear function
        for i in range(len(x)):
            A[i] = linear_function(x[i], 0)

        # Then test that interpolated points are always assigned value of
        # closest neighbour
        xis = numpy.linspace(x[0], x[-1], 10)
        points = xis

        vals = interpolate1d(x, A, points, mode='constant')

        # Find upper neighbours for each interpolation point
        xi = points[:]
        idx = numpy.searchsorted(x, xi, side='left')

        # Get the neighbours for each interpolation point
        x0 = x[idx - 1]
        x1 = x[idx]

        z0 = A[idx - 1]
        z1 = A[idx]

        # Location coefficients
        alpha = (xi - x0) / (x1 - x0)

        refs = numpy.zeros(len(vals))
        for i in range(len(refs)):
            if alpha[i] < 0.5:
                refs[i] = z0[i]

            if alpha[i] >= 0.5:
                refs[i] = z1[i]

        assert numpy.allclose(vals, refs, rtol=1e-12, atol=1e-12)
Esempio n. 4
0
    def test_1d_constant_interpolation_basic(self):
        """Interpolation library works for 1D piecewise constant function
        """

        # Define pixel centers along each direction
        x = numpy.array([1.0, 2.0, 4.0])

        # Define ny by nx array with corresponding values
        A = numpy.zeros((len(x)))

        # Define values for each x, y pair as a linear function
        for i in range(len(x)):
            A[i] = linear_function(x[i], 0)

        # Then test that interpolated points are always assigned value of
        # closest neighbour
        xis = numpy.linspace(x[0], x[-1], 10)
        points = xis

        vals = interpolate1d(x, A, points, mode='constant')

        # Find upper neighbours for each interpolation point
        xi = points[:]
        idx = numpy.searchsorted(x, xi, side='left')

        # Get the neighbours for each interpolation point
        x0 = x[idx - 1]
        x1 = x[idx]

        z0 = A[idx - 1]
        z1 = A[idx]

        # Location coefficients
        alpha = (xi - x0) / (x1 - x0)

        refs = numpy.zeros(len(vals))
        for i in range(len(refs)):
            if alpha[i] < 0.5:
                refs[i] = z0[i]

            if alpha[i] >= 0.5:
                refs[i] = z1[i]

        assert numpy.allclose(vals, refs, rtol=1e-12, atol=1e-12)
Esempio n. 5
0
    def __call__(self, zeta):

        return interpolate1d(self.x, self.y, [zeta], mode='linear')[0]