Esempio n. 1
0
    def test_attribute_with_duplicate_values(self):

        # Load the default network
        sf = safe.SAFE(verbose=False)
        sf.load_network()

        f = '/Users/abaryshnikova/Lab/Datasets/safe-data/tests/attribute_file_with_unmatched_duplicated_labels.txt'
        sf.load_attributes(attribute_file=f)
Esempio n. 2
0
    def test_euclidean(self):

        # Load the default network
        sf = safe.SAFE(verbose=False)
        sf.load_network()

        sf.define_neighborhoods(node_distance_metric='euclidean')

        num_neighbors = np.sum(sf.neighborhoods, axis=1)
        num_neighbors_avg = np.mean(num_neighbors)
        num_neighbors_std = np.std(num_neighbors)

        self.assertAlmostEqual(num_neighbors_avg, 148.44, delta=0.5, msg="Should be 148.44.")
        self.assertAlmostEqual(num_neighbors_std, 40.99, delta=0.5, msg="Should be 40.99.")
Esempio n. 3
0
    def test_default(self):

        # Load the default network
        sf = safe.SAFE(verbose=False)
        sf.load_network()

        sf.define_neighborhoods()

        num_neighbors = np.sum(sf.neighborhoods, axis=1)
        num_neighbors_avg = np.mean(num_neighbors)
        num_neighbors_std = np.std(num_neighbors)

        self.assertAlmostEqual(num_neighbors_avg, 37.5, delta=0.5, msg="Should be 37.5.")
        self.assertAlmostEqual(num_neighbors_std, 56.74, delta=0.5, msg="Should be 56.74.")
Esempio n. 4
0
    def test_shortpath(self):

        # Load the default network
        sf = safe.SAFE(verbose=False)
        sf.load_network()

        sf.define_neighborhoods(node_distance_metric='shortpath',
                                neighborhood_radius=1)

        num_neighbors = np.sum(sf.neighborhoods, axis=1)
        num_neighbors_avg = np.mean(num_neighbors)
        num_neighbors_std = np.std(num_neighbors)

        self.assertAlmostEqual(num_neighbors_avg, 15.20, delta=0.5, msg="Should be 15.20.")
        self.assertAlmostEqual(num_neighbors_std, 18.32, delta=0.5, msg="Should be 18.32.")
Esempio n. 5
0
MZ = mp.Array(ctypes.c_double,FN*(chunk-v*window),lock=False)

S   = mp.Array(ctypes.c_float,FN*(chunk-window),lock=False)
SZ1 = mp.Array(ctypes.c_float,FN*(chunk-v*window),lock=False)

ST   = mp.Array(ctypes.c_float,FN*(tiles),lock=False)
STZ1 = mp.Array(ctypes.c_float,FN*(tiles-v),lock=False)
STZ2 = mp.Array(ctypes.c_float,FN*(disjoint_tiles),lock=False)

T  = mp.Array(ctypes.c_float,FN*FN*(chunk-window-1),lock=False)
TZ = mp.Array(ctypes.c_float, FN*FN*(chunk-v*window-1))

bins = range(0,max_depth,max_depth/FN)+[np.uint32(-1)]
B = mp.Array(ctypes.c_float,bins,lock=False)

s = safe.SAFE()
#testing results here
core.sliding_moments(I,0,chunk,window,window*10,M)
core.sliding_spectrum_bin(I,0,chunk,window,B,S)
core.sliding_transitions_bin(I,0,chunk,window,B,T)

start = time.time()
core.merge_sliding_moments_target(M,MZ,t=v*window)
stop = time.time()

start = time.time()
x = 0
for i in range(tiles):
    core.spectrum_bin(I,x,x+window,B,ST,FN,FN*i)
    x += window
stop = time.time()
Esempio n. 6
0
    def test_default(self):

        # Load the default network
        sf = safe.SAFE(verbose=False)
        sf.load_network()
        sf.load_attributes()