Esempio n. 1
0
def DiscriminantSurfaceP3_init():
    global __magma_DiscriminantSurfaceP3_init__
    if not __magma_DiscriminantSurfaceP3_init__:
        magma.eval("""
R4<sage0, sage1, sage2, sage3> := PolynomialRing(IntegerRing(), 4);
DiscriminantSurfaceP3 := function(f)
    P<x, y, z, w> := PolynomialRing(IntegerRing(), 4);
    D := 1;
    for j := 1 to 4 do
        B := ideal<P | [ Derivative(P!f, i) : i in [1..4] ] cat [P.j - 1]>;
        G := GroebnerBasis(B);
        D := LCM(G[#G],D);
    end for;
    return D;
end function;
""")
        __magma_DiscriminantSurfaceP3_init__ = True
Esempio n. 2
0
 def assert_if_magma(self, expected, magma_code, mode='equal'):
     """Helper method for running test_download_magma test. Checks
     equality only if magma is installed; if it isn't, then the test
     passes."""
     from sage.all import magma
     try:
         if mode == 'equal':
             assert expected == magma.eval(magma_code)
         elif mode == 'in':
             assert expected in magma.eval(magma_code)
         else:
             raise ValueError("mode must be either 'equal' or 'in")
     except RuntimeError as the_error:
         if str(the_error).startswith("unable to start magma"):
             pass
         else:
             raise
Esempio n. 3
0
    def test_download_magma(self):

        L = self.tc.get(
            '/ModularForm/GL2/TotallyReal/4.4.725.1/holomorphic/4.4.725.1-31.1-a/download/magma'
        )
        assert 'NN := ideal<ZF | {31, 31, w^3 - 4*w + 1}>;' in L.data
        assert '[89, 89, 3*w^3 - 2*w^2 - 7*w],' in L.data
        assert 'heckeEigenvaluesArray := [4, -4,' in L.data

        page = self.tc.get(
            'ModularForm/GL2/TotallyReal/3.3.837.1/holomorphic/3.3.837.1-48.3-z/download/magma'
        )
        assert 'No such form' in page.data

        # These tests take too long to use magma_free, so we run magma when it is installed
        from sage.all import magma
        import sys
        for field, label, expected in [
            [
                '2.2.28.1', '2.2.28.1-531.1-m',
                'heckeEigenvaluesArray := [e, -1, -1, e^7 - 1/2*e^6 - 10*e^5 + 11/2*e^4 + 27*e^3 - 15*e^2 - 15*e + 4'
            ],
            [
                '3.3.837.1', '3.3.837.1-2.1-b',
                'heckeEigenvaluesArray := [1, e, e^2 - e - 7, -e^2 + 6, -e + 2, 2*e + 2, -e^2 + 2*e + 8, 2*e^2 - 4*e - 16'
            ],
            [
                '4.4.725.1', '4.4.725.1-31.1-a',
                'heckeEigenvaluesArray := [4, -4, -7, -4, 4, 2, -2, -1, -8, 2, 10'
            ]
        ]:
            sys.stdout.write("{}...".format(label))
            sys.stdout.flush()
            page = self.tc.get(
                '/ModularForm/GL2/TotallyReal/{}/holomorphic/{}/download/magma'
                .format(field, label))
            assert expected in page.data
            assert 'make_newform' in page.data
            try:
                magma_code = page.data + '\n'
                magma_code += 'f, iso := Explode(make_newform());\n'
                magma_code += 'assert(&and([iso(heckeEigenvalues[P]) eq HeckeEigenvalue(f,P): P in primes[1..10]]));\n'
                magma_code += 'f;\n'
                assert 'success' in magma.eval(magma_code)
            except RuntimeError:
                pass
Esempio n. 4
0
def DiscriminantSurfaceP3(F):
    """
        INPUT:
            - ``F`` -- a polynomial in 4 variables
        OUTPUT:
            an integer D such that F mod p is smooth <=> p \ndivides D
        EXAMPLES:
            sage: R4.<x,y,z,w> = ZZ[];
            sage: F = x^4 - 3*x^2*y^2 - 3*x^2*z^2 - 3*x^2*w^2 - 2*x*y*z*w + y^4 - 3*y^2*z^2 - 3*y^2*w^2 + z^4 - 3*z^2*w^2 + w^4;
            sage: DiscriminantSurfaceP3(F)
                188160
    """
    assert len(F.variables()) == 4
    assert F.base_ring() == ZZ
    DiscriminantSurfaceP3_init()
    x, y, z, w = var('sage0 sage1 sage2 sage3')
    D = ZZ(magma.eval("DiscriminantSurfaceP3(%s);" % F(x, y, z, w)))
    return D
Esempio n. 5
0
    def test_download_magma(self):
        # A dimension 1 example
        L = self.tc.get(
            '/ModularForm/GL2/ImaginaryQuadratic/2.0.7.1/88.5/a/download/magma'
        ).get_data(as_text=True)
        assert 'NN := ideal<ZF | {44, 2*a + 30}>;' in L
        assert '[263,a+123],' in L

        page = self.tc.get(
            'ModularForm/GL2/ImaginaryQuadratic/159.0.7.1/30.5/a/download/magma'
        ).get_data(as_text=True)
        assert 'Bianchi newform not found' in page

        # These tests take too long to use magma_free, so we run magma when it is installed
        from sage.all import magma
        import sys
        for label, expected in [[
                '2.0.4.1/100.2/a', 'ALEigenvalues[ideal<ZF | {i + 1}>] := -1;'
        ], ['2.0.11.1/933.1/a', 'ideal<ZF | {a + 30, 933}>;']]:
            sys.stdout.write("{}...".format(label))
            sys.stdout.flush()
            page = self.tc.get(
                '/ModularForm/GL2/ImaginaryQuadratic/{}/download/magma'.format(
                    label)).get_data(as_text=True)
            assert expected in page
            assert 'make_newform' in page

            magma_code = page + '\n'
            magma_code += 'f, iso := Explode(make_newform());\n'
            magma_code += 'for P in primes[1..15] do;\n if Valuation(NN,P) eq 0 then;\n  assert iso(heckeEigenvalues[P]) eq HeckeEigenvalue(f,P);\n end if;\nend for;\n'
            magma_code += 'f;\n'

            try:
                assert 'success' in magma.eval(magma_code)
            except RuntimeError as the_error:
                if str(the_error).startswith("unable to start magma"):
                    pass
                else:
                    raise
Esempio n. 6
0
def has_magma():
    try:
        magma.eval('2')
        return True
    except (TypeError, RuntimeError):
        return False
Esempio n. 7
0
def url_for_isogeny_class_label(label):
    slabel = label.split(".")
    return url_for(".by_url_isogeny_class_label",
                   cond=slabel[0],
                   alpha=slabel[1])


def class_from_curve_label(label):
    return ".".join(label.split(".")[:2])


################################################################################
# Searching
################################################################################
try:
    magma.eval('2')
    has_magma = True
except (TypeError, RuntimeError):
    has_magma = False


def genus2_lookup_equation(f):
    if not has_magma:
        return None
    f.replace(" ", "")
    # TODO allow other variables, if so, fix the error message accordingly
    R = PolynomialRing(QQ, "x")
    if ("x" in f and "," in f) or "],[" in f:
        if "],[" in f:
            e = f.split("],[")
            f = [