Esempio n. 1
0
def isom(A,B):
    # First check that A is a symmetric matrix.
    if not matrix(A).is_symmetric():
        return False
    # Then check A against the viable database candidates.
    else:
        n=len(A[0])
        m=len(B[0])
        Avec=[]
        Bvec=[]
        for i in range(n):
            for j in range(i,n):
                if i==j:
                    Avec+=[A[i][j]]
                else:
                    Avec+=[2*A[i][j]]
        for i in range(m):
            for j in range(i,m):
                if i==j:
                    Bvec+=[B[i][j]]
                else:
                    Bvec+=[2*B[i][j]]
        Aquad=QuadraticForm(ZZ,len(A[0]),Avec)
    # check positive definite
        if Aquad.is_positive_definite():
            Bquad=QuadraticForm(ZZ,len(B[0]),Bvec)
            return Aquad.is_globally_equivalent_to(Bquad)
        else:
            return False
Esempio n. 2
0
def isom(A, B):
    # First check that A is a symmetric matrix.
    if not matrix(A).is_symmetric():
        return False
    # Then check A against the viable database candidates.
    else:
        n = len(A[0])
        m = len(B[0])
        Avec = []
        Bvec = []
        for i in range(n):
            for j in range(i, n):
                if i == j:
                    Avec += [A[i][j]]
                else:
                    Avec += [2 * A[i][j]]
        for i in range(m):
            for j in range(i, m):
                if i == j:
                    Bvec += [B[i][j]]
                else:
                    Bvec += [2 * B[i][j]]
        Aquad = QuadraticForm(ZZ, len(A[0]), Avec)
        # check positive definite
        if Aquad.is_positive_definite():
            Bquad = QuadraticForm(ZZ, len(B[0]), Bvec)
            return Aquad.is_globally_equivalent_to(Bquad)
        else:
            return False
 def assert_jordan_blcs(self, p, mat):
     p = ZZ(p)
     if p == 2:
         blcs = jordan_blocks_2(mat)
     else:
         blcs = jordan_blocks_odd(mat, p)
     q = QuadraticForm(ZZ, ZZ(2) * mat)
     q1 = _blocks_to_quad_form(blcs.blocks, p)
     if p == 2:
         self.assertTrue((q.det() / q1.det()) % 8 == 1)
     else:
         self.assertTrue(kronecker_symbol(q.det() / q1.det(), p) == 1)
     self.assertEqual(
         q.hasse_invariant__OMeara(p), q1.hasse_invariant__OMeara(p))
 def assert_jordan_blocks_method(self, p, mat):
     p = ZZ(p)
     if p == 2:
         blcs = jordan_blocks_2(mat)
     else:
         blcs = jordan_blocks_odd(mat, p)
     q = QuadraticForm(ZZ, 2 * mat)
     if p == 2:
         should1 = (q.Gram_det() / blcs.Gram_det()) % 8
     else:
         should1 = kronecker_symbol((q.Gram_det() / blcs.Gram_det()), p)
     self.assertEqual(should1, 1)
     self.assertEqual(
         q.hasse_invariant__OMeara(p), blcs.hasse_invariant__OMeara())
     self.assertEqual(q.dim(), blcs.dim())
     self.assertEqual(q.content().valuation(p), blcs.content_order())
Esempio n. 5
0
def QuadraticForm_from_quadric(Q):
    """
    On input a homogeneous polynomial of degree 2 return the Quadratic Form corresponding to it.
    """
    R = Q.parent()
    assert all([sum(e)==2 for e in Q.exponents()])
    M = copy(zero_matrix(R.ngens(),R.ngens()))
    for i in range(R.ngens()):
        for j in range(R.ngens()):
            if i==j:
                M[i,j]=2*Q.coefficient(R.gen(i)*R.gen(j))
            else:
                M[i,j]=Q.coefficient(R.gen(i)*R.gen(j))
   
    return QuadraticForm(M)