def super_categories(self): from sage.categories.objects import Objects """ The right thing to return would be 'Objects()', but that doesn't have Subquotients and CartesianProducts. Likewise, 'Sets()' doesn't have TensorProducts... which we're changing below """ return [ Objects(), ]
def retrieve_structure_of_gap_handle(self): """ Return the category corresponding to the properties and categories of the handled gap object. EXAMPLES:: sage: import mygap sage: F = libgap.FreeGroup(3) sage: mygap.retrieve_structure_of_gap_handle(F) (Category of groups, <class 'mygap.GAPParent'>) sage: mygap.retrieve_structure_of_gap_handle(F.Iterator()) (Category of objects, <class 'mygap.GAPIterator'>) sage: from mygap import mygap sage: mygap.FiniteField(3) in Fields().Finite().Enumerated().GAP() True sage: mygap.eval("Integers") in Rings().Commutative().GAP().Infinite() True sage: mygap.eval("Integers").category() Join of Category of commutative rings and Category of g a p monoids and Category of commutative g a p magmas and Category of finite dimensional g a p modules with basis over rings and Category of infinite g a p sets sage: mygap.eval("PositiveIntegers").category() Category of infinite commutative associative unital additive commutative additive associative distributive g a p magmas and additive magmas sage: mygap.eval("Cyclotomics") in Fields().Infinite().GAP() True """ structure = Structure(GAPObject, Objects()) gap_categories = [str(cat) for cat in self.CategoriesOfObject()] for cat in gap_categories: if cat in gap_category_to_structure: gap_category_to_structure[cat](structure) properties = set(str(prop) for prop in self.KnownPropertiesOfObject()) true_properties = set( str(prop) for prop in self.KnownTruePropertiesOfObject()) for prop in properties: if prop in true_properties: if prop in gap_category_to_structure: gap_category_to_structure[prop](structure) else: if prop in false_properties_to_structure: false_properties_to_structure[prop](structure) # Special cases that can't yet be handled by the infrastructure # - We don't have the LDistributive and RDistributive # axioms, and the current infrastructure does not allow to make a # "and" on two axioms "IsLDistributive": "Distributive" if "IsLDistributive" in true_properties and "IsRDistributive" in true_properties: # Work around: C._with_axiom("Distributive") does not work structure.category = structure.category.Distributive() if "IsMagmaWithInversesIfNonzero" in gap_categories and structure.category.is_subcategory( Rings()): structure.category = structure.category.Division() return structure
def category(x): """ Return the category of ``x``. EXAMPLES:: sage: V = VectorSpace(QQ,3) sage: category(V) Category of finite dimensional vector spaces with basis over (number fields and quotient fields and metric spaces) """ try: return x.category() except AttributeError: from sage.categories.objects import Objects return Objects()
def transform_category(category, subcategory_mapping, axiom_mapping, initial_category=None): r""" Transform ``category`` to a new category according to the given mappings. INPUT: - ``category`` -- a category. - ``subcategory_mapping`` -- a list (or other iterable) of triples ``(from, to, mandatory)``, where - ``from`` and ``to`` are categories and - ``mandatory`` is a boolean. - ``axiom_mapping`` -- a list (or other iterable) of triples ``(from, to, mandatory)``, where - ``from`` and ``to`` are strings describing axioms and - ``mandatory`` is a boolean. - ``initial_category`` -- (default: ``None``) a category. When transforming the given category, this ``initial_category`` is used as a starting point of the result. This means the resulting category will be a subcategory of ``initial_category``. If ``initial_category`` is ``None``, then the :class:`category of objects <sage.categories.objects.Objects>` is used. OUTPUT: A category. .. NOTE:: Consider a subcategory mapping ``(from, to, mandatory)``. If ``category`` is a subcategory of ``from``, then the returned category will be a subcategory of ``to``. Otherwise and if ``mandatory`` is set, then an error is raised. Consider an axiom mapping ``(from, to, mandatory)``. If ``category`` is has axiom ``from``, then the returned category will have axiom ``to``. Otherwise and if ``mandatory`` is set, then an error is raised. EXAMPLES:: sage: from sage.rings.asymptotic.misc import transform_category sage: from sage.categories.additive_semigroups import AdditiveSemigroups sage: from sage.categories.additive_monoids import AdditiveMonoids sage: from sage.categories.additive_groups import AdditiveGroups sage: S = [ ....: (Sets(), Sets(), True), ....: (Posets(), Posets(), False), ....: (AdditiveMagmas(), Magmas(), False)] sage: A = [ ....: ('AdditiveAssociative', 'Associative', False), ....: ('AdditiveUnital', 'Unital', False), ....: ('AdditiveInverse', 'Inverse', False), ....: ('AdditiveCommutative', 'Commutative', False)] sage: transform_category(Objects(), S, A) Traceback (most recent call last): ... ValueError: Category of objects is not a subcategory of Category of sets. sage: transform_category(Sets(), S, A) Category of sets sage: transform_category(Posets(), S, A) Category of posets sage: transform_category(AdditiveSemigroups(), S, A) Category of semigroups sage: transform_category(AdditiveMonoids(), S, A) Category of monoids sage: transform_category(AdditiveGroups(), S, A) Category of groups sage: transform_category(AdditiveGroups().AdditiveCommutative(), S, A) Category of commutative groups :: sage: transform_category(AdditiveGroups().AdditiveCommutative(), S, A, ....: initial_category=Posets()) Join of Category of commutative groups and Category of posets :: sage: transform_category(ZZ.category(), S, A) Category of commutative groups sage: transform_category(QQ.category(), S, A) Category of commutative groups sage: transform_category(SR.category(), S, A) Category of commutative groups sage: transform_category(Fields(), S, A) Category of commutative groups sage: transform_category(ZZ['t'].category(), S, A) Category of commutative groups :: sage: A[-1] = ('Commutative', 'AdditiveCommutative', True) sage: transform_category(Groups(), S, A) Traceback (most recent call last): ... ValueError: Category of groups does not have axiom Commutative. """ if initial_category is None: from sage.categories.objects import Objects result = Objects() else: result = initial_category for A, B, mandatory in subcategory_mapping: if category.is_subcategory(A): result &= B elif mandatory: raise ValueError('%s is not a subcategory of %s.' % (category, A)) axioms = category.axioms() for A, B, mandatory in axiom_mapping: if A in axioms: result = result._with_axiom(B) elif mandatory: raise ValueError('%s does not have axiom %s.' % (category, A)) return result
def Sequence(x, universe=None, check=True, immutable=False, cr=False, cr_str=None, use_sage_types=False): """ A mutable list of elements with a common guaranteed universe, which can be set immutable. A universe is either an object that supports coercion (e.g., a parent), or a category. INPUT: - ``x`` - a list or tuple instance - ``universe`` - (default: None) the universe of elements; if None determined using canonical coercions and the entire list of elements. If list is empty, is category Objects() of all objects. - ``check`` -- (default: True) whether to coerce the elements of x into the universe - ``immutable`` - (default: True) whether or not this sequence is immutable - ``cr`` - (default: False) if True, then print a carriage return after each comma when printing this sequence. - ``cr_str`` - (default: False) if True, then print a carriage return after each comma when calling ``str()`` on this sequence. - ``use_sage_types`` -- (default: False) if True, coerce the built-in Python numerical types int, float, complex to the corresponding Sage types (this makes functions like vector() more flexible) OUTPUT: - a sequence EXAMPLES:: sage: v = Sequence(range(10)) sage: v.universe() <type 'int'> sage: v [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] We can request that the built-in Python numerical types be coerced to Sage objects:: sage: v = Sequence(range(10), use_sage_types=True) sage: v.universe() Integer Ring sage: v [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] You can also use seq for "Sequence", which is identical to using Sequence:: sage: v = seq([1,2,1/1]); v [1, 2, 1] sage: v.universe() Rational Field Note that assignment coerces if possible,:: sage: v = Sequence(range(10), ZZ) sage: a = QQ(5) sage: v[3] = a sage: parent(v[3]) Integer Ring sage: parent(a) Rational Field sage: v[3] = 2/3 Traceback (most recent call last): ... TypeError: no conversion of this rational to integer Sequences can be used absolutely anywhere lists or tuples can be used:: sage: isinstance(v, list) True Sequence can be immutable, so entries can't be changed:: sage: v = Sequence([1,2,3], immutable=True) sage: v.is_immutable() True sage: v[0] = 5 Traceback (most recent call last): ... ValueError: object is immutable; please change a copy instead. Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first involves conversion of the sequence to a tuple, and returning the hash of that.:: sage: v = Sequence(range(10), ZZ, immutable=True) sage: hash(v) == hash(tuple(range(10))) True If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):: sage: list.__setitem__(v, int(1), 2/3) # bad circumvention sage: v [0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9] sage: list.__setitem__(v, int(1), int(2)) # not so bad circumvention You can make a sequence with a new universe from an old sequence.:: sage: w = Sequence(v, QQ) sage: w [0, 2, 2, 3, 4, 5, 6, 7, 8, 9] sage: w.universe() Rational Field sage: w[1] = 2/3 sage: w [0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9] The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage objects. This example illustrates how every element of a list is taken into account when constructing a sequence.:: sage: v = Sequence([1,7,6,GF(5)(3)]); v [1, 2, 1, 3] sage: v.universe() Finite Field of size 5 TESTS:: sage: Sequence(["a"], universe=ZZ) Traceback (most recent call last): ... TypeError: unable to convert a to an element of Integer Ring """ from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal if isinstance(x, Sequence_generic) and universe is None: universe = x.universe() x = list(x) if isinstance(x, MPolynomialIdeal) and universe is None: universe = x.ring() x = x.gens() if universe is None: orig_x = x x = list( x) # make a copy even if x is a list, we're going to change it if len(x) == 0: from sage.categories.objects import Objects universe = Objects() else: import sage.structure.element if use_sage_types: # convert any Python built-in numerical types to Sage objects x = [sage.structure.coerce.py_scalar_to_element(e) for e in x] # start the pairwise coercion for i in range(len(x) - 1): try: x[i], x[i + 1] = sage.structure.element.canonical_coercion( x[i], x[i + 1]) except TypeError: from sage.categories.objects import Objects universe = Objects() x = list(orig_x) check = False # no point break if universe is None: # no type errors raised. universe = sage.structure.element.parent(x[len(x) - 1]) from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence from sage.rings.polynomial.pbori.pbori import BooleanMonomialMonoid from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing from sage.rings.quotient_ring import is_QuotientRing if is_MPolynomialRing(universe) or isinstance( universe, BooleanMonomialMonoid) or (is_QuotientRing(universe) and is_MPolynomialRing( universe.cover_ring())): return PolynomialSequence(x, universe, immutable=immutable, cr=cr, cr_str=cr_str) else: return Sequence_generic(x, universe, check, immutable, cr, cr_str, use_sage_types)
def super_categories(self): from sage.categories.objects import Objects return [Objects()]