Esempio n. 1
0
def RandomLinearCodeGuava(n, k, F):
    r"""
    The method used is to first construct a `k \times n` matrix of the block
    form `(I,A)`, where `I` is a `k \times k` identity matrix and `A` is a
    `k \times (n-k)` matrix constructed using random elements of `F`. Then
    the columns are permuted using a randomly selected element of the symmetric
    group `S_n`.

    INPUT:

    - ``n,k`` -- integers with `n>k>1`.

    OUTPUT:

    Returns a "random" linear code with length `n`, dimension `k` over field `F`.

    EXAMPLES::

        sage: C = codes.RandomLinearCodeGuava(30,15,GF(2)); C      # optional - gap_packages (Guava package)
        [30, 15] linear code over GF(2)
        sage: C = codes.RandomLinearCodeGuava(10,5,GF(4,'a')); C      # optional - gap_packages (Guava package)
        [10, 5] linear code over GF(4)

    AUTHOR: David Joyner (11-2005)
    """
    current_randstate().set_seed_gap()

    GapPackage("guava", spkg="gap_packages").require()
    libgap.load_package("guava")
    C=libgap.RandomLinearCode(n,k,F)
    G=C.GeneratorMat()
    MS = MatrixSpace(F, len(G), len(G[0]))
    return LinearCode(MS(G))
Esempio n. 2
0
def QuasiQuadraticResidueCode(p):
    r"""
    A (binary) quasi-quadratic residue code (or QQR code).

    Follows the definition of Proposition 2.2 in [BM2003]_. The code has a generator
    matrix in the block form `G=(Q,N)`. Here `Q` is a `p \times p` circulant
    matrix whose top row is `(0,x_1,...,x_{p-1})`, where `x_i=1` if and only if
    `i` is a quadratic residue `\mod p`, and `N` is a `p \times p` circulant
    matrix whose top row is `(0,y_1,...,y_{p-1})`, where `x_i+y_i=1` for all
    `i`.

    INPUT:

    - ``p`` -- a prime `>2`.

    OUTPUT:

    Returns a QQR code of length `2p`.

    EXAMPLES::

        sage: C = codes.QuasiQuadraticResidueCode(11); C   # optional - gap_packages (Guava package)
        [22, 11] linear code over GF(2)

    These are self-orthogonal in general and self-dual when $p \\equiv 3 \\pmod 4$.

    AUTHOR: David Joyner (11-2005)
    """
    GapPackage("guava", spkg="gap_packages").require()
    libgap.load_package("guava")
    C=libgap.QQRCode(p)
    G=C.GeneratorMat()
    MS = MatrixSpace(GF(2), len(G), len(G[0]))
    return LinearCode(MS(G))
Esempio n. 3
0
def bounds_on_minimum_distance_in_guava(n, k, F):
    r"""
    Compute a lower and upper bound on the greatest minimum distance of a
    `[n,k]` linear code over the field ``F``.

    This function requires the optional GAP package GUAVA.

    The function returns a GAP record with the two bounds and an explanation for
    each bound. The method ``Display`` can be used to show the explanations.

    The values for the lower and upper bound are obtained from a table
    constructed by Cen Tjhai for GUAVA, derived from the table of
    Brouwer. See http://www.codetables.de/ for the most recent data.
    These tables contain lower and upper bounds for `q=2` (when ``n <= 257``),
    `q=3` (when ``n <= 243``), `q=4` (``n <= 256``). (Current as of
    11 May 2006.) For codes over other fields and for larger word lengths,
    trivial bounds are used.

    INPUT:

    - ``n`` -- the length of the code to look up

    - ``k`` -- the dimension of the code to look up

    - ``F`` -- the base field of the code to look up

    OUTPUT:

    - A GAP record object. See below for an example.

    EXAMPLES::

        sage: gap_rec = codes.databases.bounds_on_minimum_distance_in_guava(10,5,GF(2))  # optional - gap_packages (Guava package)
        sage: gap_rec.Display()                                                          # optional - gap_packages (Guava package)
        rec(
          construction := [ <Operation "ShortenedCode">,
            [ [ <Operation "UUVCode">,
              [ [ <Operation "DualCode">,
              [ [ <Operation "RepetitionCode">, [ 8, 2 ] ] ] ],
              [ <Operation "UUVCode">, [ [ <Operation "DualCode">,
                [ [ <Operation "RepetitionCode">, [ 4, 2 ] ] ] ],
                [ <Operation "RepetitionCode">, [ 4, 2 ] ] ] ] ] ],
            [ 1, 2, 3, 4, 5, 6 ] ] ],
          k := 5,
          lowerBound := 4,
          lowerBoundExplanation := ...
          n := 10,
          q := 2,
          references := rec(
               ),
          upperBound := 4,
          upperBoundExplanation := ... )
    """
    GapPackage("guava", spkg="gap_packages").require()
    libgap.load_package("guava")
    return libgap.BoundsMinimumDistance(n, k, F)
Esempio n. 4
0
def RandomLinearCodeGuava(n, k, F):
    r"""
    The method used is to first construct a `k \times n` matrix of the block
    form `(I,A)`, where `I` is a `k \times k` identity matrix and `A` is a
    `k \times (n-k)` matrix constructed using random elements of `F`. Then
    the columns are permuted using a randomly selected element of the symmetric
    group `S_n`.

    INPUT:

    - ``n,k`` -- integers with `n>k>1`.

    OUTPUT:

    Returns a "random" linear code with length `n`, dimension `k` over field `F`.

    EXAMPLES::

        sage: C = codes.RandomLinearCodeGuava(30,15,GF(2)); C      # optional - gap_packages (Guava package)
        [30, 15] linear code over GF(2)
        sage: C = codes.RandomLinearCodeGuava(10,5,GF(4,'a')); C      # optional - gap_packages (Guava package)
        [10, 5] linear code over GF(4)

    AUTHOR: David Joyner (11-2005)
    """
    current_randstate().set_seed_gap()

    q = F.order()
    GapPackage("guava", spkg="gap_packages").require()
    gap.load_package("guava")
    gap.eval("C:=RandomLinearCode(" + str(n) + "," + str(k) + ", GF(" +
             str(q) + "))")
    gap.eval("G:=GeneratorMat(C)")
    k = int(gap.eval("Length(G)"))
    n = int(gap.eval("Length(G[1])"))
    G = [[
        gfq_gap_to_sage(gap.eval("G[%s][%s]" % (i, j)), F)
        for j in range(1, n + 1)
    ] for i in range(1, k + 1)]
    MS = MatrixSpace(F, k, n)
    return LinearCode(MS(G))
Esempio n. 5
0
def QuasiQuadraticResidueCode(p):
    r"""
    A (binary) quasi-quadratic residue code (or QQR code).

    Follows the definition of Proposition 2.2 in [BM]. The code has a generator
    matrix in the block form `G=(Q,N)`. Here `Q` is a `p \times p` circulant
    matrix whose top row is `(0,x_1,...,x_{p-1})`, where `x_i=1` if and only if
    `i` is a quadratic residue `\mod p`, and `N` is a `p \times p` circulant
    matrix whose top row is `(0,y_1,...,y_{p-1})`, where `x_i+y_i=1` for all
    `i`.

    INPUT:

    - ``p`` -- a prime `>2`.

    OUTPUT:

    Returns a QQR code of length `2p`.

    EXAMPLES::

        sage: C = codes.QuasiQuadraticResidueCode(11); C   # optional - gap_packages (Guava package)
        [22, 11] linear code over GF(2)

    These are self-orthogonal in general and self-dual when $p \\equiv 3 \\pmod 4$.

    AUTHOR: David Joyner (11-2005)
    """
    GapPackage("guava", spkg="gap_packages").require()
    F = GF(2)
    gap.load_package("guava")
    gap.eval("C:=QQRCode(" + str(p) + ")")
    gap.eval("G:=GeneratorMat(C)")
    k = int(gap.eval("Length(G)"))
    n = int(gap.eval("Length(G[1])"))
    G = [[
        gfq_gap_to_sage(gap.eval("G[%s][%s]" % (i, j)), F)
        for j in range(1, n + 1)
    ] for i in range(1, k + 1)]
    MS = MatrixSpace(F, k, n)
    return LinearCode(MS(G))
Esempio n. 6
0
def best_linear_code_in_guava(n, k, F):
    r"""
    Returns the linear code of length ``n``, dimension ``k`` over field ``F``
    with the maximal minimum distance which is known to the GAP package GUAVA.

    The function uses the tables described in ``bounds_on_minimum_distance_in_guava`` to
    construct this code. This requires the optional GAP package GUAVA.

    INPUT:

    - ``n`` -- the length of the code to look up

    - ``k`` -- the dimension of the code to look up

    - ``F`` -- the base field of the code to look up


    OUTPUT:

    - A :class:`LinearCode` which is a best linear code of the given parameters known to GUAVA.

    EXAMPLES::

        sage: codes.databases.best_linear_code_in_guava(10,5,GF(2))    # long time; optional - gap_packages (Guava package)
        [10, 5] linear code over GF(2)
        sage: gap.eval("C:=BestKnownLinearCode(10,5,GF(2))")           # long time; optional - gap_packages (Guava package)
        'a linear [10,5,4]2..4 shortened code'

    This means that the best possible binary linear code of length 10 and
    dimension 5 is a code with minimum distance 4 and covering radius s somewhere
    between 2 and 4. Use ``bounds_on_minimum_distance_in_guava(10,5,GF(2))``
    for further details.
    """
    GapPackage("guava", spkg="gap_packages").require()
    gap.load_package("guava")
    q = F.order()
    C = gap("BestKnownLinearCode(%s,%s,GF(%s))" % (n, k, q))
    from .linear_code import LinearCode
    return LinearCode(C.GeneratorMat()._matrix_(F))