Esempio n. 1
0
    def line_vertices(self):
        r"""
        Return the vertices for each line in a 3-d acyclic vector_configuration.

        NOTE:

        An acyclic vector configuration corresponds to the normal vectors of
        a hyperplane arrangement with a selected base region.

        OUTPUT:

        A list of pairs.

        EXAMPLES::

            sage: from cn_hyperarr.vector_classes import *
            sage: vc = VectorConfiguration([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,1],[1,1,1]])
            sage: vc.line_vertices()
            [(0, 1), (1, 2), (2, 3), (0, 4)]

        The vectors [-1,0,1] and [1,0,1] are the vertices of the line containing
        [0,0,1]::

            sage: vc = VectorConfiguration([[0,0,1],[-1,0,1],[1,0,1]])
            sage: vc.line_vertices()
            [(1, 2)]
        """
        assert self.is_acyclic(), "The vector configuration should be acyclic"
        nb_pts = self.n_vectors()
        cocircuits = self.three_dim_cocircuits()
        list_verts = []

        for coc in cocircuits:
            zero_indices = coc[1]
            if len(zero_indices) > 2:
                the_cone = Polyhedron(rays=[self[j] for j in zero_indices],
                                      backend=self._backend)
                the_verts = tuple([
                    _ for _ in zero_indices
                    if not the_cone.relative_interior_contains(self[_])
                ])
                assert len(the_verts) == 2, "problem with the cocircuits"
                if the_verts not in list_verts:
                    list_verts += [the_verts]

        return list_verts
Esempio n. 2
0
    def dominating_pairs(self):
        r"""
        Return the dominating pairs for each point in a 3-d acyclic vector_configuration.

        A point p has a dominating pair (a,b) when p lies in the positive
        linear span of a and b.

        OUTPUT:

        A dictionary where keys are the indices of the vectors and the values
        are the associated dominating pairs.

        EXAMPLES::

            sage: from cn_hyperarr.vector_classes import *
            sage: vc = VectorConfiguration([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,1],[1,1,1]])
            sage: vc.dominating_pairs()
            {0: set(), 1: set(), 2: set(), 3: {(0, 1)}, 4: {(1, 2)}, 5: {(0, 4), (2, 3)}}
            sage: tau = AA((1+sqrt(5))/2)
            sage: ncn = [[2*tau+1,2*tau,tau],[2*tau+2,2*tau+1,tau+1],[1,1,1],[tau+1,tau+1,tau],[2*tau,2*tau,tau],[tau+1,tau+1,1],[1,1,0],[0,1,0],[1,0,0],[tau+1,tau,tau]]
            sage: ncn_conf = VectorConfiguration(ncn);
            sage: ncn_conf.dominating_pairs()
            {0: {(4, 8), (6, 9)},
             1: {(0, 2), (3, 8), (5, 9)},
             2: set(),
             3: {(2, 6), (7, 9)},
             4: {(1, 7), (2, 6)},
             5: {(0, 7), (2, 6)},
             6: {(7, 8)},
             7: set(),
             8: set(),
             9: {(2, 8)}}

        The vector [0,0,1] is in the positive linear span of [-1,0,1] and
        [1,0,1]::

            sage: vc = VectorConfiguration([[0,0,1],[-1,0,1],[1,0,1]])
            sage: vc.dominating_pairs()
            {0: {(1, 2)},
             1: set(),
             2: set()}
        """
        assert self.is_acyclic(), "The vector configuration should be acyclic"
        nb_pts = self.n_vectors()
        cocircuits = self.three_dim_cocircuits()
        dom_dict = {}

        for index in range(nb_pts):
            the_dominating_pairs = set()
            my_v = self[index]
            # We only consider the cocircuits that are zero at given index and contains at least 3 zero elements.
            relevant_cocircuits = (coc for coc in cocircuits
                                   if index in coc[1] and len(coc[1]) >= 3)
            for r_coc in relevant_cocircuits:
                the_cone = Polyhedron(rays=[self[j] for j in r_coc[1]],
                                      backend=self._backend)
                if the_cone.relative_interior_contains(my_v):
                    # This means that my_v is dominated.
                    # Now we catch the dominating rays:
                    # We are interested in the index of
                    # the rays and not just the ray (which
                    # may not be equal to the vector we started with
                    dom_rays = [
                        j for j in r_coc[1]
                        if not the_cone.relative_interior_contains(self[j])
                    ]
                    assert len(dom_rays) == 2, "problem with the cocircuits"
                    the_dominating_pairs.add(tuple(dom_rays))

            dom_dict[index] = the_dominating_pairs

        return dom_dict
Esempio n. 3
0
    def is_acyclic(self):
        r"""
        Return whether ``self`` is acyclic.

        A vector configuration is acyclic if the origin is not in the relative
        interior of the cone spanned by the vectors.

        OUTPUT:

        Boolean. Whether ``self`` is acyclic.

        .. SEEALSO::

            :meth:`is_totally_cyclic`.

        EXAMPLES::

            sage: from cn_hyperarr.vector_classes import *
            sage: vc = VectorConfiguration([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,1],[1,1,1]])
            sage: vc.is_acyclic()
            True
            sage: v = [[1, -1, -1],
            ....:      [1, 1, -1],
            ....:      [1, 1, 1],
            ....:      [1, -1, 1],
            ....:      [-1, -1, 1],
            ....:      [-1, -1, -1],
            ....:      [-1, 1, -1],
            ....:      [-1, 1, 1]]
            sage: vc = VectorConfiguration(v)
            sage: vc.is_acyclic()
            False

        TESTS::

            sage: vc = VectorConfiguration([])
            sage: vc.is_acyclic()
            True

            sage: vc2 = VectorConfiguration([[1,0,0],[-1,0,0]])
            sage: vc2.is_acyclic()
            False

            sage: vc3 = VectorConfiguration([[0,0,0]])
            sage: vc3.is_acyclic()
            Traceback (most recent call last):
            ...
            ValueError: PPL::ray(e):
            e == 0, but the origin cannot be a ray.

            sage: vc = VectorConfiguration([[1,0,0],[0,1,0],[0,0,1],[1,1,0],[0,1,1],[1,1,1],[-1,0,0]])
            sage: vc.is_acyclic()
            False
        """
        acyc_vc = Polyhedron(rays=self, backend=self.backend())
        if acyc_vc.relative_interior_contains(
                vector([0] * acyc_vc.ambient_dim())):
            return False
        elif not acyc_vc.lines() == ():
            return False
        else:
            return True