def _is_valid_digraph_edge_set( edges, frozen=0 ): """ Returns True if the input data is the edge set of a digraph for a quiver (no loops, no 2-cycles, edge-labels of the specified format), and returns False otherwise. INPUT: - ``frozen`` -- (integer; default:0) The number of frozen vertices. EXAMPLES:: sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _is_valid_digraph_edge_set sage: _is_valid_digraph_edge_set( [[0,1,'a'],[2,3,(1,-1)]] ) The given digraph has edge labels which are not integral or integral 2-tuples. False sage: _is_valid_digraph_edge_set( [[0,1],[2,3,(1,-1)]] ) True sage: _is_valid_digraph_edge_set( [[0,1,'a'],[2,3,(1,-1)],[3,2,(1,-1)]] ) The given digraph or edge list contains oriented 2-cycles. False """ try: dg = DiGraph() dg.allow_multiple_edges(True) dg.add_edges( edges ) # checks if the digraph contains loops if dg.has_loops(): print "The given digraph or edge list contains loops." return False # checks if the digraph contains oriented 2-cycles if _has_two_cycles( dg ): print "The given digraph or edge list contains oriented 2-cycles." return False # checks if all edge labels are 'None', positive integers or tuples of positive integers if not all( i == None or ( i in ZZ and i > 0 ) or ( type(i) == tuple and len(i) == 2 and i[0] in ZZ and i[1] in ZZ ) for i in dg.edge_labels() ): print "The given digraph has edge labels which are not integral or integral 2-tuples." return False # checks if all edge labels for multiple edges are 'None' or positive integers if dg.has_multiple_edges(): for e in set( dg.multiple_edges(labels=False) ): if not all( i == None or ( i in ZZ and i > 0 ) for i in dg.edge_label( e[0], e[1] ) ): print "The given digraph or edge list contains multiple edges with non-integral labels." return False n = dg.order() - frozen if n < 0: print "The number of frozen variables is larger than the number of vertices." return False if [ e for e in dg.edges(labels=False) if e[0] >= n] <> []: print "The given digraph or edge list contains edges within the frozen vertices." return False return True except StandardError: print "Could not even build a digraph from the input data." return False
class NaiveCrystal(UniqueRepresentation, Parent): r""" This is an example of a "crystal" which does not come from any kind of representation, designed primarily to test the Stembridge local rules with. The crystal has vertices labeled 0 through 5, with 0 the highest weight. The code here could also possibly be generalized to create a class that automatically builds a crystal from an edge-colored digraph, if someone feels adventurous. Currently, only the methods :meth:`highest_weight_vector`, :meth:`e`, and :meth:`f` are guaranteed to work. EXAMPLES:: sage: C = Crystals().example(choice='naive') sage: C.highest_weight_vector() 0 """ def __init__(self): """ EXAMPLES:: sage: C = sage.categories.examples.crystals.NaiveCrystal() sage: C == Crystals().example(choice='naive') True """ Parent.__init__(self, category = ClassicalCrystals()) self.n = 2 self._cartan_type = CartanType(['A',2]) self.G = DiGraph(5) self.G.add_edges([ [0,1,1], [1,2,1], [2,3,1], [3,5,1], [0,4,2], [4,5,2] ]) self.module_generators = [ self(0) ] def __repr__(self): """ EXAMPLES:: sage: Crystals().example(choice='naive') A broken crystal, defined by digraph, of dimension five. """ return "A broken crystal, defined by digraph, of dimension five." class Element(ElementWrapper): def e(self, i): r""" Returns the action of `e_i` on ``self``. EXAMPLES:: sage: C = Crystals().example(choice='naive') sage: [[c,i,c.e(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.e(i) is not None] [[1, 1, 0], [2, 1, 1], [3, 1, 2], [5, 1, 3], [4, 2, 0], [5, 2, 4]] """ assert i in self.index_set() for edge in self.parent().G.edges(): if edge[1]==int(str(self)) and edge[2]==i: return self.parent()(edge[0]) return None def f(self, i): r""" Returns the action of `f_i` on ``self``. EXAMPLES:: sage: C = Crystals().example(choice='naive') sage: [[c,i,c.f(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.f(i) is not None] [[0, 1, 1], [1, 1, 2], [2, 1, 3], [3, 1, 5], [0, 2, 4], [4, 2, 5]] """ assert i in self.index_set() for edge in self.parent().G.edges_incident(int(str(self))): if edge[2] == i: return self.parent()(edge[1]) return None
class NaiveCrystal(UniqueRepresentation, Parent): r""" This is an example of a "crystal" which does not come from any kind of representation, designed primarily to test the Stembridge local rules with. The crystal has vertices labeled 0 through 5, with 0 the highest weight. The code here could also possibly be generalized to create a class that automatically builds a crystal from an edge-colored digraph, if someone feels adventurous. Currently, only the methods :meth:`highest_weight_vector`, :meth:`e`, and :meth:`f` are guaranteed to work. EXAMPLES:: sage: C = Crystals().example(choice='naive') sage: C.highest_weight_vector() 0 """ def __init__(self): """ EXAMPLES:: sage: C = sage.categories.examples.crystals.NaiveCrystal() sage: C == Crystals().example(choice='naive') True """ Parent.__init__(self, category=ClassicalCrystals()) self.n = 2 self._cartan_type = CartanType(['A', 2]) self.G = DiGraph(5) self.G.add_edges([[0, 1, 1], [1, 2, 1], [2, 3, 1], [3, 5, 1], [0, 4, 2], [4, 5, 2]]) self.module_generators = [self(0)] def __repr__(self): """ EXAMPLES:: sage: Crystals().example(choice='naive') A broken crystal, defined by digraph, of dimension five. """ return "A broken crystal, defined by digraph, of dimension five." class Element(ElementWrapper): def e(self, i): r""" Returns the action of `e_i` on ``self``. EXAMPLES:: sage: C = Crystals().example(choice='naive') sage: [[c,i,c.e(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.e(i) is not None] [[1, 1, 0], [2, 1, 1], [3, 1, 2], [5, 1, 3], [4, 2, 0], [5, 2, 4]] """ assert i in self.index_set() for edge in self.parent().G.edges(): if edge[1] == int(str(self)) and edge[2] == i: return self.parent()(edge[0]) return None def f(self, i): r""" Returns the action of `f_i` on ``self``. EXAMPLES:: sage: C = Crystals().example(choice='naive') sage: [[c,i,c.f(i)] for i in C.index_set() for c in [C(j) for j in [0..5]] if c.f(i) is not None] [[0, 1, 1], [1, 1, 2], [2, 1, 3], [3, 1, 5], [0, 2, 4], [4, 2, 5]] """ assert i in self.index_set() for edge in self.parent().G.edges_incident(int(str(self))): if edge[2] == i: return self.parent()(edge[1]) return None