def ideal(self, *gens, **kwds):
     """
     Create an ideal in this polynomial ring.
     """
     do_coerce = False
     if len(gens) == 1:
         from sage.rings.ideal import is_Ideal
         if is_Ideal(gens[0]):
             if gens[0].ring() is self:
                 return gens[0]
             gens = gens[0].gens()
         elif isinstance(gens[0], (list, tuple)):
             gens = gens[0]
     if not self._has_singular:
         # pass through
         MPolynomialRing_generic.ideal(self,gens,**kwds)
     if is_SingularElement(gens):
         gens = list(gens)
         do_coerce = True
     if is_Macaulay2Element(gens):
         gens = list(gens)
         do_coerce = True
     elif not isinstance(gens, (list, tuple)):
         gens = [gens]
     if ('coerce' in kwds and kwds['coerce']) or do_coerce:
         gens = [self(x) for x in gens]  # this will even coerce from singular ideals correctly!
     return multi_polynomial_ideal.MPolynomialIdeal(self, gens, **kwds)
Esempio n. 2
0
 def ideal(self, *gens, **kwds):
     """
     Create an ideal in this polynomial ring.
     """
     do_coerce = False
     if len(gens) == 1:
         from sage.rings.ideal import is_Ideal
         if is_Ideal(gens[0]):
             if gens[0].ring() is self:
                 return gens[0]
             gens = gens[0].gens()
         elif isinstance(gens[0], (list, tuple)):
             gens = gens[0]
     if not self._has_singular:
         # pass through
         MPolynomialRing_generic.ideal(self, gens, **kwds)
     if is_SingularElement(gens):
         gens = list(gens)
         do_coerce = True
     if is_Macaulay2Element(gens):
         gens = list(gens)
         do_coerce = True
     elif not isinstance(gens, (list, tuple)):
         gens = [gens]
     if ('coerce' in kwds and kwds['coerce']) or do_coerce:
         gens = [self(x) for x in gens
                 ]  # this will even coerce from singular ideals correctly!
     return multi_polynomial_ideal.MPolynomialIdeal(self, gens, **kwds)
    def __call__(self, x, check=True):
        """
        Convert ``x`` to an element of this multivariate polynomial ring,
        possibly non-canonically.

        EXAMPLES:

        We create a Macaulay2 multivariate polynomial via ideal
        arithmetic, then convert it into R.

        ::

            sage: R.<x,y> = PolynomialRing(QQ, 2)                        # optional
            sage: I = R.ideal([x^3 + y, y])                              # optional
            sage: S = I._macaulay2_()                                    # optional
            sage: T = S*S*S                                              # optional
            sage: U = T.gens().entries().flatten()                       # optional
            sage: f = U[2]; f                                            # optional
            x^6*y+2*x^3*y^2+y^3
            sage: R(repr(f))                                             # optional
            x^6*y + 2*x^3*y^2 + y^3

        Some other subtle conversions. We create polynomial rings in 2
        variables over the rationals, integers, and a finite field.

        ::

            sage: R.<x,y> = QQ[]
            sage: S.<x,y> = ZZ[]
            sage: T.<x,y> = GF(7)[]

        We convert from integer polynomials to rational polynomials,
        and back::

            sage: f = R(S.0^2 - 4*S.1^3); f
            -4*y^3 + x^2
            sage: parent(f)
            Multivariate Polynomial Ring in x, y over Rational Field
            sage: parent(S(f))
            Multivariate Polynomial Ring in x, y over Integer Ring

        We convert from polynomials over the finite field.

        ::

            sage: f = R(T.0^2 - 4*T.1^3); f
            3*y^3 + x^2
            sage: parent(f)
            Multivariate Polynomial Ring in x, y over Rational Field

        We dump and load the polynomial ring S::

            sage: S2 = loads(dumps(S))
            sage: S2 == S
            True

        Coerce works and gets the right parent.

        ::

            sage: parent(S2._coerce_(S.0)) is S2
            True

        Conversion to reduce modulo a prime between rings with different
        variable names::

            sage: R.<x,y> = PolynomialRing(QQ,2)
            sage: S.<a,b> = PolynomialRing(GF(7),2)
            sage: f = x^2 + 2/3*y^3
            sage: S(f)
            3*b^3 + a^2

        Conversion from symbolic variables::

            sage: x,y,z = var('x,y,z')
            sage: R = QQ[x,y,z]
            sage: type(x)
            <type 'sage.symbolic.expression.Expression'>
            sage: type(R(x))
            <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
            sage: f = R(x^3 + y^3 - z^3); f
            x^3 + y^3 - z^3
            sage: type(f)
            <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
            sage: parent(f)
            Multivariate Polynomial Ring in x, y, z over Rational Field

        A more complicated symbolic and computational mix. Behind the
        scenes Singular and Maxima are doing the real work.

        ::

            sage: R = QQ[x,y,z]
            sage: f = (x^3 + y^3 - z^3)^10; f
            (x^3 + y^3 - z^3)^10
            sage: g = R(f); parent(g)
            Multivariate Polynomial Ring in x, y, z over Rational Field
            sage: (f - g).expand()
            0

        It intelligently handles conversions from polynomial rings in a subset
        of the variables too.

        ::

            sage: R = GF(5)['x,y,z']
            sage: S = ZZ['y']
            sage: R(7*S.0)
            2*y
            sage: T = ZZ['x,z']
            sage: R(2*T.0 + 6*T.1 + T.0*T.1^2)
            x*z^2 + 2*x + z

        ::

            sage: R = QQ['t,x,y,z']
            sage: S.<x> = ZZ['x']
            sage: T.<z> = S['z']
            sage: T
            Univariate Polynomial Ring in z over Univariate Polynomial Ring in x over Integer Ring
            sage: f = (x+3*z+5)^2; f
            9*z^2 + (6*x + 30)*z + x^2 + 10*x + 25
            sage: R(f)
            x^2 + 6*x*z + 9*z^2 + 10*x + 30*z + 25

        Arithmetic with a constant from a base ring::

            sage: R.<u,v> = QQ[]
            sage: S.<x,y> = R[]
            sage: u^3*x^2 + v*y
            u^3*x^2 + v*y

        Stacked polynomial rings convert into constants if possible. First,
        the univariate case::

            sage: R.<x> = QQ[]
            sage: S.<u,v> = R[]
            sage: S(u + 2)
            u + 2
            sage: S(u + 2).degree()
            1
            sage: S(x + 3)
            x + 3
            sage: S(x + 3).degree()
            0

        Second, the multivariate case::

            sage: R.<x,y> = QQ[]
            sage: S.<u,v> = R[]
            sage: S(x + 2*y)
            x + 2*y
            sage: S(u + 2*v)
            u + 2*v

        Conversion from strings::

            sage: R.<x,y> = QQ[]
            sage: R('x+(1/2)*y^2')
            1/2*y^2 + x
            sage: S.<u,v> = ZZ[]
            sage: S('u^2 + u*v + v^2')
            u^2 + u*v + v^2

        Foreign polynomial rings convert into the highest ring; the point
        here is that an element of T could convert to an element of R or an
        element of S; it is anticipated that an element of T is more likely
        to be "the right thing" and is historically consistent.

        ::

            sage: R.<x,y> = QQ[]
            sage: S.<u,v> = R[]
            sage: T.<a,b> = QQ[]
            sage: S(a + b)
            u + v

        TESTS:

        Check if we still allow nonsense :trac:`7951`::

            sage: P = PolynomialRing(QQ, 0, '')
            sage: P('pi')
            Traceback (most recent call last):
            ...
            TypeError: Unable to coerce pi (<class 'sage.symbolic.constants.Pi'>) to Rational

        Check that it is possible to convert strings to iterated polynomial
        rings :trac:`13327`::

            sage: Rm = QQ["a"]["b, c"]
            sage: Rm("a*b")
            a*b
            sage: parent(_) is Rm
            True
        """
        from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict
        import sage.rings.polynomial.polynomial_element as polynomial_element

        # handle constants that coerce into self.base_ring() first, if possible
        if isinstance(x, Element) and x.parent() is self.base_ring():
            # A Constant multi-polynomial
            return self({self._zero_tuple:x})

        try:
            y = self.base_ring()._coerce_(x)
            return MPolynomial_polydict(self, {self._zero_tuple:y})
        except TypeError:
            pass

        from multi_polynomial_libsingular import MPolynomial_libsingular

        if isinstance(x, MPolynomial_polydict):
            P = x.parent()

            if P is self:
                return x
            elif P == self:
                return MPolynomial_polydict(self, x.element().dict())
            elif self.base_ring().has_coerce_map_from(P):
                # it might be in the base ring (i.e. a poly ring over a poly ring)
                c = self.base_ring()(x)
                return MPolynomial_polydict(self, {self._zero_tuple:c})
            elif len(P.variable_names()) == len(self.variable_names()):
                # Map the variables in some crazy way (but in order,
                # of course).  This is here since R(blah) is supposed
                # to be "make an element of R if at all possible with
                # no guarantees that this is mathematically solid."
                K = self.base_ring()
                D = x.element().dict()
                for i, a in D.iteritems():
                    D[i] = K(a)
                return MPolynomial_polydict(self, D)
            elif set(P.variable_names()).issubset(set(self.variable_names())) and self.base_ring().has_coerce_map_from(P.base_ring()):
                # If the named variables are a superset of the input, map the variables by name
                return MPolynomial_polydict(self, self._extract_polydict(x))
            else:
                return MPolynomial_polydict(self, x._mpoly_dict_recursive(self.variable_names(), self.base_ring()))

        elif isinstance(x, MPolynomial_libsingular):
            P = x.parent()
            if P == self:
                return MPolynomial_polydict(self, x.dict())
            elif self.base_ring().has_coerce_map_from(P):
                # it might be in the base ring (i.e. a poly ring over a poly ring)
                c = self.base_ring()(x)
                return MPolynomial_polydict(self, {self._zero_tuple:c})
            elif len(P.variable_names()) == len(self.variable_names()):
                # Map the variables in some crazy way (but in order,
                # of course).  This is here since R(blah) is supposed
                # to be "make an element of R if at all possible with
                # no guarantees that this is mathematically solid."
                K = self.base_ring()
                D = x.dict()
                for i, a in D.iteritems():
                    D[i] = K(a)
                return MPolynomial_polydict(self, D)
            elif set(P.variable_names()).issubset(set(self.variable_names())) and self.base_ring().has_coerce_map_from(P.base_ring()):
                # If the named variables are a superset of the input, map the variables by name
                return MPolynomial_polydict(self, self._extract_polydict(x))
            else:
                return MPolynomial_polydict(self, x._mpoly_dict_recursive(self.variable_names(), self.base_ring()))

        elif isinstance(x, polynomial_element.Polynomial):
            return MPolynomial_polydict(self, x._mpoly_dict_recursive(self.variable_names(), self.base_ring()))

        elif isinstance(x, PolyDict):
            return MPolynomial_polydict(self, x)

        elif isinstance(x, fraction_field_element.FractionFieldElement) and x.parent().ring() == self:
            if x.denominator() == 1:
                return x.numerator()
            else:
                raise TypeError("unable to coerce since the denominator is not 1")

        elif is_SingularElement(x) and self._has_singular:
            self._singular_().set_ring()
            try:
                return x.sage_poly(self)
            except TypeError:
                raise TypeError("unable to coerce singular object")

        elif hasattr(x, '_polynomial_'):
            return x._polynomial_(self)

        elif isinstance(x, str):
            try:
                from sage.misc.sage_eval import sage_eval
                return self(sage_eval(x, self.gens_dict_recursive()))
            except NameError as e:
                raise TypeError("unable to convert string")

        elif is_Macaulay2Element(x):
            try:
                s = x.sage_polystring()
                if len(s) == 0:
                    raise TypeError
                # NOTE: It's CRUCIAL to use the eval command as follows,
                # i.e., with the gen dict as the third arg and the second
                # empty.  Otherwise pickling won't work after calls to this eval!!!
                # This took a while to figure out!
                return self(eval(s, {}, self.gens_dict()))
            except (AttributeError, TypeError, NameError, SyntaxError):
                raise TypeError("Unable to coerce macaulay2 object")
            return MPolynomial_polydict(self, x)

        if isinstance(x, dict):
            return MPolynomial_polydict(self, x)
        else:
            c = self.base_ring()(x)
            return MPolynomial_polydict(self, {self._zero_tuple:c})
Esempio n. 4
0
    def __call__(self, x, check=True):
        """
        Convert ``x`` to an element of this multivariate polynomial ring,
        possibly non-canonically.

        EXAMPLES:

        We create a Macaulay2 multivariate polynomial via ideal
        arithmetic, then convert it into R.

        ::

            sage: R.<x,y> = PolynomialRing(QQ, 2)
            sage: I = R.ideal([x^3 + y, y])
            sage: S = I._macaulay2_()                                    # optional - macaulay2
            sage: T = S*S*S                                              # optional - macaulay2
            sage: U = T.gens().entries().flatten()                       # optional - macaulay2
            sage: f = U[2]; f                                            # optional - macaulay2
            x^6*y+2*x^3*y^2+y^3
            sage: R(repr(f))                                             # optional - macaulay2
            x^6*y + 2*x^3*y^2 + y^3

        Some other subtle conversions. We create polynomial rings in 2
        variables over the rationals, integers, and a finite field.

        ::

            sage: R.<x,y> = QQ[]
            sage: S.<x,y> = ZZ[]
            sage: T.<x,y> = GF(7)[]

        We convert from integer polynomials to rational polynomials,
        and back::

            sage: f = R(S.0^2 - 4*S.1^3); f
            -4*y^3 + x^2
            sage: parent(f)
            Multivariate Polynomial Ring in x, y over Rational Field
            sage: parent(S(f))
            Multivariate Polynomial Ring in x, y over Integer Ring

        We convert from polynomials over the finite field.

        ::

            sage: f = R(T.0^2 - 4*T.1^3); f
            3*y^3 + x^2
            sage: parent(f)
            Multivariate Polynomial Ring in x, y over Rational Field

        We dump and load the polynomial ring S::

            sage: S2 = loads(dumps(S))
            sage: S2 == S
            True

        Coerce works and gets the right parent.

        ::

            sage: parent(S2._coerce_(S.0)) is S2
            True

        Conversion to reduce modulo a prime between rings with different
        variable names::

            sage: R.<x,y> = PolynomialRing(QQ,2)
            sage: S.<a,b> = PolynomialRing(GF(7),2)
            sage: f = x^2 + 2/3*y^3
            sage: S(f)
            3*b^3 + a^2

        Conversion from symbolic variables::

            sage: x,y,z = var('x,y,z')
            sage: R = QQ['x,y,z']
            sage: type(x)
            <type 'sage.symbolic.expression.Expression'>
            sage: type(R(x))
            <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
            sage: f = R(x^3 + y^3 - z^3); f
            x^3 + y^3 - z^3
            sage: type(f)
            <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
            sage: parent(f)
            Multivariate Polynomial Ring in x, y, z over Rational Field

        A more complicated symbolic and computational mix. Behind the
        scenes Singular and Maxima are doing the real work.

        ::

            sage: R = QQ['x,y,z']
            sage: f = (x^3 + y^3 - z^3)^10; f
            (x^3 + y^3 - z^3)^10
            sage: g = R(f); parent(g)
            Multivariate Polynomial Ring in x, y, z over Rational Field
            sage: (f - g).expand()
            0

        It intelligently handles conversions from polynomial rings in a subset
        of the variables too.

        ::

            sage: R = GF(5)['x,y,z']
            sage: S = ZZ['y']
            sage: R(7*S.0)
            2*y
            sage: T = ZZ['x,z']
            sage: R(2*T.0 + 6*T.1 + T.0*T.1^2)
            x*z^2 + 2*x + z

        ::

            sage: R = QQ['t,x,y,z']
            sage: S.<x> = ZZ['x']
            sage: T.<z> = S['z']
            sage: T
            Univariate Polynomial Ring in z over Univariate Polynomial Ring in x over Integer Ring
            sage: f = (x+3*z+5)^2; f
            9*z^2 + (6*x + 30)*z + x^2 + 10*x + 25
            sage: R(f)
            x^2 + 6*x*z + 9*z^2 + 10*x + 30*z + 25

        Arithmetic with a constant from a base ring::

            sage: R.<u,v> = QQ[]
            sage: S.<x,y> = R[]
            sage: u^3*x^2 + v*y
            u^3*x^2 + v*y

        Stacked polynomial rings convert into constants if possible. First,
        the univariate case::

            sage: R.<x> = QQ[]
            sage: S.<u,v> = R[]
            sage: S(u + 2)
            u + 2
            sage: S(u + 2).degree()
            1
            sage: S(x + 3)
            x + 3
            sage: S(x + 3).degree()
            0

        Second, the multivariate case::

            sage: R.<x,y> = QQ[]
            sage: S.<u,v> = R[]
            sage: S(x + 2*y)
            x + 2*y
            sage: S(u + 2*v)
            u + 2*v

        Conversion from strings::

            sage: R.<x,y> = QQ[]
            sage: R('x+(1/2)*y^2')
            1/2*y^2 + x
            sage: S.<u,v> = ZZ[]
            sage: S('u^2 + u*v + v^2')
            u^2 + u*v + v^2

        Foreign polynomial rings convert into the highest ring; the point
        here is that an element of T could convert to an element of R or an
        element of S; it is anticipated that an element of T is more likely
        to be "the right thing" and is historically consistent.

        ::

            sage: R.<x,y> = QQ[]
            sage: S.<u,v> = R[]
            sage: T.<a,b> = QQ[]
            sage: S(a + b)
            u + v

        TESTS:

        Check if we still allow nonsense (see :trac:`7951`)::

            sage: P = PolynomialRing(QQ, 0, '')
            sage: P('pi')
            Traceback (most recent call last):
            ...
            TypeError: Unable to coerce pi (<class 'sage.symbolic.constants.Pi'>) to Rational

        Check that it is possible to convert strings to iterated
        polynomial rings (see :trac:`13327`)::

            sage: Rm = QQ["a"]["b, c"]
            sage: Rm("a*b")
            a*b
            sage: parent(_) is Rm
            True

        Check that conversion from PARI works correctly (see
        :trac:`17974`)::

            sage: A.<a> = PolynomialRing(QQ)
            sage: B.<d,e> = PolynomialRing(A)
            sage: f = pari(a*d)
            sage: B(f)
            a*d

            sage: A.<a,b> = PolynomialRing(QQ)
            sage: B.<d,e> = PolynomialRing(A)
            sage: f = pari(a*d)
            sage: B(f)
            a*d

        It is possible to convert `f` into `B` by using ``f.sage()``,
        but this requires specifying a ``locals`` argument::

            sage: f
            d*a
            sage: f.sage()
            Traceback (most recent call last):
            ...
            NameError: name 'd' is not defined
            sage: f.sage(locals={'a': a, 'd': d})
            a*d

        """
        from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict
        import sage.rings.polynomial.polynomial_element as polynomial_element

        # handle constants that coerce into self.base_ring() first, if possible
        if isinstance(x, Element) and x.parent() is self.base_ring():
            # A Constant multi-polynomial
            return self({self._zero_tuple: x})

        try:
            y = self.base_ring()._coerce_(x)
            return MPolynomial_polydict(self, {self._zero_tuple: y})
        except TypeError:
            pass

        from multi_polynomial_libsingular import MPolynomial_libsingular

        if isinstance(x, MPolynomial_polydict):
            P = x.parent()

            if P is self:
                return x
            elif P == self:
                return MPolynomial_polydict(self, x.element().dict())
            elif self.base_ring().has_coerce_map_from(P):
                # it might be in the base ring (i.e. a poly ring over a poly ring)
                c = self.base_ring()(x)
                return MPolynomial_polydict(self, {self._zero_tuple: c})
            elif len(P.variable_names()) == len(self.variable_names()):
                # Map the variables in some crazy way (but in order,
                # of course).  This is here since R(blah) is supposed
                # to be "make an element of R if at all possible with
                # no guarantees that this is mathematically solid."
                K = self.base_ring()
                D = x.element().dict()
                for i, a in D.iteritems():
                    D[i] = K(a)
                return MPolynomial_polydict(self, D)
            elif set(P.variable_names()).issubset(set(self.variable_names(
            ))) and self.base_ring().has_coerce_map_from(P.base_ring()):
                # If the named variables are a superset of the input, map the variables by name
                return MPolynomial_polydict(self, self._extract_polydict(x))
            else:
                return MPolynomial_polydict(
                    self,
                    x._mpoly_dict_recursive(self.variable_names(),
                                            self.base_ring()))

        elif isinstance(x, MPolynomial_libsingular):
            P = x.parent()
            if P == self:
                return MPolynomial_polydict(self, x.dict())
            elif self.base_ring().has_coerce_map_from(P):
                # it might be in the base ring (i.e. a poly ring over a poly ring)
                c = self.base_ring()(x)
                return MPolynomial_polydict(self, {self._zero_tuple: c})
            elif len(P.variable_names()) == len(self.variable_names()):
                # Map the variables in some crazy way (but in order,
                # of course).  This is here since R(blah) is supposed
                # to be "make an element of R if at all possible with
                # no guarantees that this is mathematically solid."
                K = self.base_ring()
                D = x.dict()
                for i, a in D.iteritems():
                    D[i] = K(a)
                return MPolynomial_polydict(self, D)
            elif set(P.variable_names()).issubset(set(self.variable_names(
            ))) and self.base_ring().has_coerce_map_from(P.base_ring()):
                # If the named variables are a superset of the input, map the variables by name
                return MPolynomial_polydict(self, self._extract_polydict(x))
            else:
                return MPolynomial_polydict(
                    self,
                    x._mpoly_dict_recursive(self.variable_names(),
                                            self.base_ring()))

        elif isinstance(x, polynomial_element.Polynomial):
            return MPolynomial_polydict(
                self,
                x._mpoly_dict_recursive(self.variable_names(),
                                        self.base_ring()))

        elif isinstance(x, PolyDict):
            return MPolynomial_polydict(self, x)

        elif isinstance(x, fraction_field_element.FractionFieldElement
                        ) and x.parent().ring() == self:
            if x.denominator() == 1:
                return x.numerator()
            else:
                raise TypeError(
                    "unable to coerce since the denominator is not 1")

        elif is_SingularElement(x) and self._has_singular:
            self._singular_().set_ring()
            try:
                return x.sage_poly(self)
            except TypeError:
                raise TypeError("unable to coerce singular object")

        elif hasattr(x, '_polynomial_'):
            return x._polynomial_(self)

        elif isinstance(x, str):
            from sage.misc.sage_eval import sage_eval
            try:
                x = sage_eval(x, self.gens_dict_recursive())
            except NameError:
                raise TypeError("unable to evaluate {!r} in {}".format(
                    x, self))
            return self(x)

        elif is_Macaulay2Element(x):
            try:
                s = x.sage_polystring()
                if len(s) == 0:
                    raise TypeError
                # NOTE: It's CRUCIAL to use the eval command as follows,
                # i.e., with the gen dict as the third arg and the second
                # empty.  Otherwise pickling won't work after calls to this eval!!!
                # This took a while to figure out!
                return self(eval(s, {}, self.gens_dict()))
            except (AttributeError, TypeError, NameError, SyntaxError):
                raise TypeError("Unable to coerce macaulay2 object")
            return MPolynomial_polydict(self, x)

        elif isinstance(x, pari_gen) and x.type() == 't_POL':
            # This recursive approach is needed because PARI
            # represents multivariate polynomials as iterated
            # univariate polynomials.  Below, v is the variable
            # with highest priority, and the x[i] are expressions
            # in the remaining variables.
            v = self.gens_dict_recursive()[str(x.variable())]
            return sum(self(x[i]) * v**i for i in xrange(x.poldegree() + 1))

        if isinstance(x, dict):
            return MPolynomial_polydict(self, x)
        else:
            c = self.base_ring()(x)
            return MPolynomial_polydict(self, {self._zero_tuple: c})
Esempio n. 5
0
class MPolynomialRing_polydict( MPolynomialRing_macaulay2_repr, PolynomialRing_singular_repr, MPolynomialRing_generic):
    """
    Multivariable polynomial ring.

    EXAMPLES::

        sage: R = PolynomialRing(Integers(12), 'x', 5); R
        Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Ring of integers modulo 12
        sage: loads(R.dumps()) == R
        True
    """
    def __init__(self, base_ring, n, names, order):
        from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        order = TermOrder(order,n)
        MPolynomialRing_generic.__init__(self, base_ring, n, names, order)
        # Construct the generators
        v = [0 for _ in xrange(n)]
        one = base_ring(1);
        self._gens = []
        C = self._poly_class()
        for i in xrange(n):
            v[i] = 1  # int's!
            self._gens.append(C(self, {tuple(v):one}))
            v[i] = 0
        self._gens = tuple(self._gens)
        self._zero_tuple = tuple(v)
        self._has_singular = can_convert_to_singular(self)
        # This polynomial ring should belong to Algebras(base_ring).
        # Algebras(...).parent_class, which was called from MPolynomialRing_generic.__init__,
        # tries to provide a conversion from the base ring, if it does not exist.
        # This is for algebras that only do the generic stuff in their initialisation.
        # But here, we want to use PolynomialBaseringInjection. Hence, we need to
        # wipe the memory and construct the conversion from scratch.
        if n:
            from sage.rings.polynomial.polynomial_element import PolynomialBaseringInjection
            base_inject = PolynomialBaseringInjection(base_ring, self)
            self.register_coercion(base_inject)

    def _monomial_order_function(self):
        return self.__monomial_order_function

    def _poly_class(self):
        from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict
        return MPolynomial_polydict

    def __cmp__(left, right):
        if not is_MPolynomialRing(right):
            return cmp(type(left),type(right))
        else:
            return cmp((left.base_ring(), left.ngens(), left.variable_names(), left.term_order()),
                       (right.base_ring(), right.ngens(), right.variable_names(), right.term_order()))

    def __call__(self, x, check=True):
        """
        Convert ``x`` to an element of this multivariate polynomial ring,
        possibly non-canonically.

        EXAMPLES:

        We create a Macaulay2 multivariate polynomial via ideal
        arithmetic, then convert it into R.

        ::

            sage: R.<x,y> = PolynomialRing(QQ, 2)                        # optional
            sage: I = R.ideal([x^3 + y, y])                              # optional
            sage: S = I._macaulay2_()                                    # optional
            sage: T = S*S*S                                              # optional
            sage: U = T.gens().entries().flatten()                       # optional
            sage: f = U[2]; f                                            # optional
            x^6*y+2*x^3*y^2+y^3
            sage: R(repr(f))                                             # optional
            x^6*y + 2*x^3*y^2 + y^3

        Some other subtle conversions. We create polynomial rings in 2
        variables over the rationals, integers, and a finite field.

        ::

            sage: R.<x,y> = QQ[]
            sage: S.<x,y> = ZZ[]
            sage: T.<x,y> = GF(7)[]

        We convert from integer polynomials to rational polynomials,
        and back::

            sage: f = R(S.0^2 - 4*S.1^3); f
            -4*y^3 + x^2
            sage: parent(f)
            Multivariate Polynomial Ring in x, y over Rational Field
            sage: parent(S(f))
            Multivariate Polynomial Ring in x, y over Integer Ring

        We convert from polynomials over the finite field.

        ::

            sage: f = R(T.0^2 - 4*T.1^3); f
            3*y^3 + x^2
            sage: parent(f)
            Multivariate Polynomial Ring in x, y over Rational Field

        We dump and load the polynomial ring S::

            sage: S2 = loads(dumps(S))
            sage: S2 == S
            True

        Coerce works and gets the right parent.

        ::

            sage: parent(S2._coerce_(S.0)) is S2
            True

        Conversion to reduce modulo a prime between rings with different
        variable names::

            sage: R.<x,y> = PolynomialRing(QQ,2)
            sage: S.<a,b> = PolynomialRing(GF(7),2)
            sage: f = x^2 + 2/3*y^3
            sage: S(f)
            3*b^3 + a^2

        Conversion from symbolic variables::

            sage: x,y,z = var('x,y,z')
            sage: R = QQ[x,y,z]
            sage: type(x)
            <type 'sage.symbolic.expression.Expression'>
            sage: type(R(x))
            <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
            sage: f = R(x^3 + y^3 - z^3); f
            x^3 + y^3 - z^3
            sage: type(f)
            <type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
            sage: parent(f)
            Multivariate Polynomial Ring in x, y, z over Rational Field

        A more complicated symbolic and computational mix. Behind the
        scenes Singular and Maxima are doing the real work.

        ::

            sage: R = QQ[x,y,z]
            sage: f = (x^3 + y^3 - z^3)^10; f
            (x^3 + y^3 - z^3)^10
            sage: g = R(f); parent(g)
            Multivariate Polynomial Ring in x, y, z over Rational Field
            sage: (f - g).expand()
            0

        It intelligently handles conversions from polynomial rings in a subset
        of the variables too.

        ::

            sage: R = GF(5)['x,y,z']
            sage: S = ZZ['y']
            sage: R(7*S.0)
            2*y
            sage: T = ZZ['x,z']
            sage: R(2*T.0 + 6*T.1 + T.0*T.1^2)
            x*z^2 + 2*x + z

        ::

            sage: R = QQ['t,x,y,z']
            sage: S.<x> = ZZ['x']
            sage: T.<z> = S['z']
            sage: T
            Univariate Polynomial Ring in z over Univariate Polynomial Ring in x over Integer Ring
            sage: f = (x+3*z+5)^2; f
            9*z^2 + (6*x + 30)*z + x^2 + 10*x + 25
            sage: R(f)
            x^2 + 6*x*z + 9*z^2 + 10*x + 30*z + 25

        Arithmetic with a constant from a base ring::

            sage: R.<u,v> = QQ[]
            sage: S.<x,y> = R[]
            sage: u^3*x^2 + v*y
            u^3*x^2 + v*y

        Stacked polynomial rings convert into constants if possible. First,
        the univariate case::

            sage: R.<x> = QQ[]
            sage: S.<u,v> = R[]
            sage: S(u + 2)
            u + 2
            sage: S(u + 2).degree()
            1
            sage: S(x + 3)
            x + 3
            sage: S(x + 3).degree()
            0

        Second, the multivariate case::

            sage: R.<x,y> = QQ[]
            sage: S.<u,v> = R[]
            sage: S(x + 2*y)
            x + 2*y
            sage: S(u + 2*v)
            u + 2*v

        Conversion from strings::

            sage: R.<x,y> = QQ[]
            sage: R('x+(1/2)*y^2')
            1/2*y^2 + x
            sage: S.<u,v> = ZZ[]
            sage: S('u^2 + u*v + v^2')
            u^2 + u*v + v^2

        Foreign polynomial rings convert into the highest ring; the point
        here is that an element of T could convert to an element of R or an
        element of S; it is anticipated that an element of T is more likely
        to be "the right thing" and is historically consistent.

        ::

            sage: R.<x,y> = QQ[]
            sage: S.<u,v> = R[]
            sage: T.<a,b> = QQ[]
            sage: S(a + b)
            u + v

        TESTS:

        Check if we still allow nonsense :trac:`7951`::

            sage: P = PolynomialRing(QQ, 0, '')
            sage: P('pi')
            Traceback (most recent call last):
            ...
            TypeError: Unable to coerce pi (<class 'sage.symbolic.constants.Pi'>) to Rational

        Check that it is possible to convert strings to iterated polynomial
        rings :trac:`13327`::

            sage: Rm = QQ["a"]["b, c"]
            sage: Rm("a*b")
            a*b
            sage: parent(_) is Rm
            True
        """
        from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict
        import sage.rings.polynomial.polynomial_element as polynomial_element

        # handle constants that coerce into self.base_ring() first, if possible
        if isinstance(x, Element) and x.parent() is self.base_ring():
            # A Constant multi-polynomial
            return self({self._zero_tuple:x})

        try:
            y = self.base_ring()._coerce_(x)
            return MPolynomial_polydict(self, {self._zero_tuple:y})
        except TypeError:
            pass

        from multi_polynomial_libsingular import MPolynomial_libsingular

        if isinstance(x, MPolynomial_polydict):
            P = x.parent()

            if P is self:
                return x
            elif P == self:
                return MPolynomial_polydict(self, x.element().dict())
            elif self.base_ring().has_coerce_map_from(P):
                # it might be in the base ring (i.e. a poly ring over a poly ring)
                c = self.base_ring()(x)
                return MPolynomial_polydict(self, {self._zero_tuple:c})
            elif len(P.variable_names()) == len(self.variable_names()):
                # Map the variables in some crazy way (but in order,
                # of course).  This is here since R(blah) is supposed
                # to be "make an element of R if at all possible with
                # no guarantees that this is mathematically solid."
                K = self.base_ring()
                D = x.element().dict()
                for i, a in D.iteritems():
                    D[i] = K(a)
                return MPolynomial_polydict(self, D)
            elif set(P.variable_names()).issubset(set(self.variable_names())) and self.base_ring().has_coerce_map_from(P.base_ring()):
                # If the named variables are a superset of the input, map the variables by name
                return MPolynomial_polydict(self, self._extract_polydict(x))
            else:
                return MPolynomial_polydict(self, x._mpoly_dict_recursive(self.variable_names(), self.base_ring()))

        elif isinstance(x, MPolynomial_libsingular):
            P = x.parent()
            if P == self:
                return MPolynomial_polydict(self, x.dict())
            elif self.base_ring().has_coerce_map_from(P):
                # it might be in the base ring (i.e. a poly ring over a poly ring)
                c = self.base_ring()(x)
                return MPolynomial_polydict(self, {self._zero_tuple:c})
            elif len(P.variable_names()) == len(self.variable_names()):
                # Map the variables in some crazy way (but in order,
                # of course).  This is here since R(blah) is supposed
                # to be "make an element of R if at all possible with
                # no guarantees that this is mathematically solid."
                K = self.base_ring()
                D = x.dict()
                for i, a in D.iteritems():
                    D[i] = K(a)
                return MPolynomial_polydict(self, D)
            elif set(P.variable_names()).issubset(set(self.variable_names())) and self.base_ring().has_coerce_map_from(P.base_ring()):
                # If the named variables are a superset of the input, map the variables by name
                return MPolynomial_polydict(self, self._extract_polydict(x))
            else:
                return MPolynomial_polydict(self, x._mpoly_dict_recursive(self.variable_names(), self.base_ring()))

        elif isinstance(x, polynomial_element.Polynomial):
            return MPolynomial_polydict(self, x._mpoly_dict_recursive(self.variable_names(), self.base_ring()))

        elif isinstance(x, PolyDict):
            return MPolynomial_polydict(self, x)

        elif isinstance(x, fraction_field_element.FractionFieldElement) and x.parent().ring() == self:
            if x.denominator() == 1:
                return x.numerator()
            else:
                raise TypeError, "unable to coerce since the denominator is not 1"

        elif is_SingularElement(x) and self._has_singular:
            self._singular_().set_ring()
            try:
                return x.sage_poly(self)
            except TypeError:
                raise TypeError, "unable to coerce singular object"

        elif hasattr(x, '_polynomial_'):
            return x._polynomial_(self)

        elif isinstance(x, str):
            try:
                from sage.misc.sage_eval import sage_eval
                return self(sage_eval(x, self.gens_dict_recursive()))
            except NameError, e:
                raise TypeError, "unable to convert string"

        elif is_Macaulay2Element(x):
            try:
                s = x.sage_polystring()
                if len(s) == 0:
                    raise TypeError
                # NOTE: It's CRUCIAL to use the eval command as follows,
                # i.e., with the gen dict as the third arg and the second
                # empty.  Otherwise pickling won't work after calls to this eval!!!
                # This took a while to figure out!
                return self(eval(s, {}, self.gens_dict()))
            except (AttributeError, TypeError, NameError, SyntaxError):
                raise TypeError, "Unable to coerce macaulay2 object"
            return MPolynomial_polydict(self, x)