Esempio n. 1
0
def canonical_parameters(group, weight, sign, base_ring):
    """
    Return the canonically normalized parameters associated to a choice
    of group, weight, sign, and base_ring. That is, normalize each of
    these to be of the correct type, perform all appropriate type
    checking, etc.

    EXAMPLES::

        sage: p1 = sage.modular.modsym.modsym.canonical_parameters(5,int(2),1,QQ) ; p1
        (Congruence Subgroup Gamma0(5), 2, 1, Rational Field)
        sage: p2 = sage.modular.modsym.modsym.canonical_parameters(Gamma0(5),2,1,QQ) ; p2
        (Congruence Subgroup Gamma0(5), 2, 1, Rational Field)
        sage: p1 == p2
        True
        sage: type(p1[1])
        <type 'sage.rings.integer.Integer'>
    """
    sign = rings.Integer(sign)
    if not (sign in [-1, 0, 1]):
        raise ValueError("sign must be -1, 0, or 1")

    weight = rings.Integer(weight)
    if weight <= 1:
        raise ValueError("the weight must be at least 2")

    if isinstance(group, (int, rings.Integer)):
        group = arithgroup.Gamma0(group)

    elif isinstance(group, dirichlet.DirichletCharacter):
        try:
            eps = group.minimize_base_ring()
        except NotImplementedError:
            # TODO -- implement minimize_base_ring over finite fields
            eps = group
        G = eps.parent()
        if eps.is_trivial():
            group = arithgroup.Gamma0(eps.modulus())
        else:
            group = (eps, G)
        if base_ring is None: base_ring = eps.base_ring()

    if base_ring is None: base_ring = rational_field.RationalField()

    if not is_CommutativeRing(base_ring):
        raise TypeError("base_ring (=%s) must be a commutative ring" %
                        base_ring)

    if not base_ring.is_field():
        raise TypeError("(currently) base_ring (=%s) must be a field" %
                        base_ring)

    return group, weight, sign, base_ring
Esempio n. 2
0
    def __init__(self, group, weight, base_ring, character=None):
        """
        Create an ambient space of modular forms.
        
        EXAMPLES::
        
            sage: m = ModularForms(Gamma1(20),20); m
            Modular Forms space of dimension 238 for Congruence Subgroup Gamma1(20) of weight 20 over Rational Field
            sage: m.is_ambient()
            True
        """
        if not arithgroup.is_CongruenceSubgroup(group):
            raise TypeError, 'group (=%s) must be a congruence subgroup' % group
        weight = rings.Integer(weight)

        if character is None and arithgroup.is_Gamma0(group):
            character = dirichlet.TrivialCharacter(group.level(), base_ring)

        space.ModularFormsSpace.__init__(self, group, weight, character,
                                         base_ring)
        try:
            d = self.dimension()
        except NotImplementedError:
            d = None
        hecke.AmbientHeckeModule.__init__(self, base_ring, d, group.level(),
                                          weight)
Esempio n. 3
0
 def set_precision(self, n):
     """
     Set the default precision for displaying elements of this space.
     
     EXAMPLES::
     
         sage: m = ModularForms(Gamma1(5),2)
         sage: m.set_precision(10)
         sage: m.basis()
         [
         1 + 60*q^3 - 120*q^4 + 240*q^5 - 300*q^6 + 300*q^7 - 180*q^9 + O(q^10),
         q + 6*q^3 - 9*q^4 + 27*q^5 - 28*q^6 + 30*q^7 - 11*q^9 + O(q^10),
         q^2 - 4*q^3 + 12*q^4 - 22*q^5 + 30*q^6 - 24*q^7 + 5*q^8 + 18*q^9 + O(q^10)
         ]
         sage: m.set_precision(5)
         sage: m.basis()
         [
         1 + 60*q^3 - 120*q^4 + O(q^5),
         q + 6*q^3 - 9*q^4 + O(q^5),
         q^2 - 4*q^3 + 12*q^4 + O(q^5)
         ]
     """
     if n < 0:
         raise ValueError, "n (=%s) must be >= 0" % n
     self.__prec = rings.Integer(n)
Esempio n. 4
0
 def modular_symbols(self, sign=0):
     """
     Return the corresponding space of modular symbols with the given
     sign.
     
     EXAMPLES::
     
         sage: S = ModularForms(11,2)
         sage: S.modular_symbols()
         Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
         sage: S.modular_symbols(sign=1)
         Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field
         sage: S.modular_symbols(sign=-1)
         Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field
     
     ::
     
         sage: ModularForms(1,12).modular_symbols()
         Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
     """
     sign = rings.Integer(sign)
     try:
         return self.__modular_symbols[sign]
     except AttributeError:
         self.__modular_symbols = {}
     except KeyError:
         pass
     M = modsym.ModularSymbols(group=self.group(),
                               weight=self.weight(),
                               sign=sign,
                               base_ring=self.base_ring())
     self.__modular_symbols[sign] = M
     return M
Esempio n. 5
0
    def modular_symbols(self, sign=0):
        """
        Return corresponding space of modular symbols with given sign.

        EXAMPLES::

            sage: eps = DirichletGroup(13).0
            sage: M = ModularForms(eps^2, 2)
            sage: M.modular_symbols()
            Modular Symbols space of dimension 4 and level 13, weight 2, character [zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
            sage: M.modular_symbols(1)
            Modular Symbols space of dimension 3 and level 13, weight 2, character [zeta6], sign 1, over Cyclotomic Field of order 6 and degree 2
            sage: M.modular_symbols(-1)
            Modular Symbols space of dimension 1 and level 13, weight 2, character [zeta6], sign -1, over Cyclotomic Field of order 6 and degree 2
            sage: M.modular_symbols(2)
            Traceback (most recent call last):
            ...
            ValueError: sign must be -1, 0, or 1
        """
        sign = rings.Integer(sign)
        try:
            return self.__modsym[sign]
        except AttributeError:
            self.__modsym = {}
        except KeyError:
            pass
        self.__modsym[sign] = modsym.ModularSymbols(\
            self.character(),
            weight = self.weight(),
            sign = sign,
            base_ring = self.base_ring())
        return self.__modsym[sign]
Esempio n. 6
0
    def new_submodule(self, p=None):
        """
        Return the new or `p`-new submodule of this ambient
        module.

        INPUT:


        -  ``p`` - (default: None), if specified return only
           the `p`-new submodule.


        EXAMPLES::

            sage: m = ModularForms(Gamma0(33),2); m
            Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field
            sage: m.new_submodule()
            Modular Forms subspace of dimension 1 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field

        Another example::

            sage: M = ModularForms(17,4)
            sage: N = M.new_subspace(); N
            Modular Forms subspace of dimension 4 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(17) of weight 4 over Rational Field
            sage: N.basis()
            [
            q + 2*q^5 + O(q^6),
            q^2 - 3/2*q^5 + O(q^6),
            q^3 + O(q^6),
            q^4 - 1/2*q^5 + O(q^6)
            ]

        ::

            sage: ModularForms(12,4).new_submodule()
            Modular Forms subspace of dimension 1 of Modular Forms space of dimension 9 for Congruence Subgroup Gamma0(12) of weight 4 over Rational Field

        Unfortunately (TODO) - `p`-new submodules aren't yet
        implemented::

            sage: m.new_submodule(3)            # not implemented
            Traceback (most recent call last):
            ...
            NotImplementedError
            sage: m.new_submodule(11)           # not implemented
            Traceback (most recent call last):
            ...
            NotImplementedError
        """
        if not p is None:
            p = rings.Integer(p)
            if not p.is_prime():
                raise ValueError("p (=%s) must be a prime or None." % p)
        return self.cuspidal_submodule().new_submodule(
            p) + self.eisenstein_submodule().new_submodule(p)
Esempio n. 7
0
def dimension_supersingular_module(prime, level=1):
    r"""
    Return the dimension of the Supersingular module, which is
    equal to the dimension of the space of modular forms of weight `2`
    and conductor equal to ``prime`` times ``level``.

    INPUT:

    - ``prime`` -- integer, prime

    - ``level`` -- integer, positive

    OUTPUT:

    - dimension -- integer, nonnegative

    EXAMPLES:

    The code below computes the dimensions of Supersingular modules
    with level=1 and prime = 7, 15073 and 83401::

        sage: dimension_supersingular_module(7)
        1

        sage: dimension_supersingular_module(15073)
        1256

        sage: dimension_supersingular_module(83401)
        6950

    .. NOTE::

        The case of level > 1 has not been implemented yet.

    AUTHORS:

    - David Kohel -- [email protected]

    - Iftikhar Burhanuddin - [email protected]
    """
    if not(rings.Integer(prime).is_prime()):
        raise ValueError("%s is not a prime" % prime)

    if level == 1:
        return Gamma0(prime).dimension_modular_forms(2)

    # list of genus(X_0(level)) equal to zero
    # elif (level in [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25]):
    # compute basis

    else:
        raise NotImplementedError
Esempio n. 8
0
    def _compute_q_expansion_basis(self, prec=None, new=False):
        """
        Compute a q-expansion basis for self to precision prec.

        EXAMPLES::

            sage: EisensteinForms(22,4)._compute_q_expansion_basis(6)
            [1 + O(q^6),
            q + 28*q^3 - 8*q^4 + 126*q^5 + O(q^6),
            q^2 + 9*q^4 + O(q^6),
            O(q^6)]
            sage: EisensteinForms(22,4)._compute_q_expansion_basis(15)
            [1 + O(q^15),
            q + 28*q^3 - 8*q^4 + 126*q^5 + 344*q^7 - 72*q^8 + 757*q^9 - 224*q^12 + 2198*q^13 + O(q^15),
            q^2 + 9*q^4 + 28*q^6 + 73*q^8 + 126*q^10 + 252*q^12 + 344*q^14 + O(q^15),
            q^11 + O(q^15)]
        """
        if prec is None:
            prec = self.prec()
        else:
            prec = rings.Integer(prec)

        if new:
            E = self.new_eisenstein_series()
        else:
            E = self.eisenstein_series()
        K = self.base_ring()
        V = K**prec
        G = []
        for e in E:
            f = e.q_expansion(prec)
            w = f.padded_list(prec)
            L = f.base_ring()
            if K.has_coerce_map_from(L):
                G.append(V(w))
            else:
                # restrict scalars from L to K
                r, d = cyclotomic_restriction(L, K)
                s = [r(x) for x in w]
                for i in range(d):
                    G.append(V([x[i] for x in s]))

        W = V.submodule(G, check=False)
        R = self._q_expansion_ring()
        X = [R(f.list(), prec) for f in W.basis()]
        if not new:
            return X + [R(0, prec)] * (self.dimension() - len(X))
        else:
            return X
Esempio n. 9
0
    def two_torsion_rank(self):
        r"""
        Return the dimension of the 2-torsion subgroup of
        `E(K)`.

        This will be 0, 1 or 2.

        EXAMPLES::

            sage: E=EllipticCurve('11a1')
            sage: E.two_torsion_rank()
            0
            sage: K.<alpha>=QQ.extension(E.division_polynomial(2).monic())
            sage: E.base_extend(K).two_torsion_rank()
            1
            sage: E.reduction(53).two_torsion_rank()
            2

        ::

            sage: E = EllipticCurve('14a1')
            sage: E.two_torsion_rank()
            1
            sage: K.<alpha>=QQ.extension(E.division_polynomial(2).monic().factor()[1][0])
            sage: E.base_extend(K).two_torsion_rank()
            2

        ::

            sage: EllipticCurve('15a1').two_torsion_rank()
            2

        """
        f = self.division_polynomial(rings.Integer(2))
        n = len(f.roots()) + 1
        return rings.Integer(n).ord(rings.Integer(2))
Esempio n. 10
0
def supersingular_D(prime):
    r"""
    Return a fundamental discriminant `D` of an
    imaginary quadratic field, where the given prime does not split.

    See Silverman's Advanced Topics in the Arithmetic of Elliptic
    Curves, page 184, exercise 2.30(d).

    INPUT:

    - prime -- integer, prime

    OUTPUT:

    - D -- integer, negative

    EXAMPLES:

    These examples return *supersingular discriminants* for 7,
    15073 and 83401::

        sage: supersingular_D(7)
        -4

        sage: supersingular_D(15073)
        -15

        sage: supersingular_D(83401)
        -7

    AUTHORS:

    - David Kohel - [email protected]

    - Iftikhar Burhanuddin - [email protected]
    """
    if not(rings.Integer(prime).is_prime()):
        raise ValueError("%s is not a prime" % prime)

    # Making picking D more intelligent
    D = -1
    while True:
        Dmod4 = rings.Mod(D, 4)
        if Dmod4 in (0, 1) and (kronecker(D, prime) != 1):
            return D
        D = D - 1
Esempio n. 11
0
def canonical_parameters(group, level, weight, base_ring):
    """
    Given a group, level, weight, and base_ring as input by the user,
    return a canonicalized version of them, where level is a Sage
    integer, group really is a group, weight is a Sage integer, and
    base_ring a Sage ring. Note that we can't just get the level from
    the group, because we have the convention that the character for
    Gamma1(N) is None (which makes good sense).

    INPUT:


    -  ``group`` - int, long, Sage integer, group,
       dirichlet character, or

    -  ``level`` - int, long, Sage integer, or group

    -  ``weight`` - coercible to Sage integer

    -  ``base_ring`` - commutative Sage ring


    OUTPUT:


    -  ``level`` - Sage integer

    -  ``group`` - congruence subgroup

    -  ``weight`` - Sage integer

    -  ``ring`` - commutative Sage ring


    EXAMPLES::

        sage: from sage.modular.modform.constructor import canonical_parameters
        sage: v = canonical_parameters(5, 5, int(7), ZZ); v
        (5, Congruence Subgroup Gamma0(5), 7, Integer Ring)
        sage: type(v[0]), type(v[1]), type(v[2]), type(v[3])
        (<type 'sage.rings.integer.Integer'>,
         <class 'sage.modular.arithgroup.congroup_gamma0.Gamma0_class_with_category'>,
         <type 'sage.rings.integer.Integer'>,
         <type 'sage.rings.integer_ring.IntegerRing_class'>)
        sage: canonical_parameters( 5, 7, 7, ZZ )
        Traceback (most recent call last):
        ...
        ValueError: group and level do not match.
    """
    weight = rings.Integer(weight)
    if weight <= 0:
        raise NotImplementedError, "weight must be at least 1"

    if isinstance(group, dirichlet.DirichletCharacter):
        if ( group.level() != rings.Integer(level) ):
            raise ValueError, "group.level() and level do not match."
        group = group.minimize_base_ring()
        level = rings.Integer(level)

    elif arithgroup.is_CongruenceSubgroup(group):
        if ( rings.Integer(level) != group.level() ):
            raise ValueError, "group.level() and level do not match."
        # normalize the case of SL2Z
        if arithgroup.is_SL2Z(group) or \
           arithgroup.is_Gamma1(group) and group.level() == rings.Integer(1):
            group = arithgroup.Gamma0(rings.Integer(1))

    elif group is None:
        pass

    else:
        try:
            m = rings.Integer(group)
        except TypeError:
            raise TypeError, "group of unknown type."
        level = rings.Integer(level)
        if ( m != level ):
            raise ValueError, "group and level do not match."
        group = arithgroup.Gamma0(m)

    if not is_CommutativeRing(base_ring):
        raise TypeError, "base_ring (=%s) must be a commutative ring"%base_ring

    # it is *very* important to include the level as part of the data
    # that defines the key, since dirichlet characters of different
    # levels can compare equal, but define much different modular
    # forms spaces.
    return level, group, weight, base_ring
Esempio n. 12
0
def supersingular_j(FF):
    r"""
    This function returns a supersingular j-invariant over the finite
    field FF.

    INPUT:

    - ``FF``  -- finite field with p^2 elements, where p is a prime number

    OUTPUT:
       finite field element -- a supersingular j-invariant
       defined over the finite field FF

    EXAMPLES:

    The following examples calculate supersingular j-invariants for a
    few finite fields::

        sage: supersingular_j(GF(7^2, 'a'))
        6

    Observe that in this example the j-invariant is not defined over
    the prime field::

        sage: supersingular_j(GF(15073^2, 'a'))
        4443*a + 13964
        sage: supersingular_j(GF(83401^2, 'a'))
        67977

    AUTHORS:

    - David Kohel -- [email protected]

    - Iftikhar Burhanuddin -- [email protected]
    """
    if not (FF.is_field()) or not (FF.is_finite()):
        raise ValueError("%s is not a finite field" % FF)
    prime = FF.characteristic()
    if not (rings.Integer(prime).is_prime()):
        raise ValueError("%s is not a prime" % prime)
    if not (rings.Integer(FF.cardinality())) == rings.Integer(prime**2):
        raise ValueError("%s is not a quadratic extension" % FF)
    if kronecker(-1, prime) != 1:
        j_invss = 1728  #(2^2 * 3)^3
    elif kronecker(-2, prime) != 1:
        j_invss = 8000  #(2^2 * 5)^3
    elif kronecker(-3, prime) != 1:
        j_invss = 0  #0^3
    elif kronecker(-7, prime) != 1:
        j_invss = 16581375  #(3 * 5 * 17)^3
    elif kronecker(-11, prime) != 1:
        j_invss = -32768  #-(2^5)^3
    elif kronecker(-19, prime) != 1:
        j_invss = -884736  #-(2^5 * 3)^3
    elif kronecker(-43, prime) != 1:
        j_invss = -884736000  #-(2^6 * 3 * 5)^3
    elif kronecker(-67, prime) != 1:
        j_invss = -147197952000  #-(2^5 * 3 * 5 * 11)^3
    elif kronecker(-163, prime) != 1:
        j_invss = -262537412640768000  #-(2^6 * 3 * 5 * 23 * 29)^3
    else:
        D = supersingular_D(prime)
        hc_poly = FF['x'](pari(D).polclass())
        root_hc_poly_list = list(hc_poly.roots())

        j_invss = root_hc_poly_list[0][0]
    return FF(j_invss)
Esempio n. 13
0
class ModularFormsAmbient(space.ModularFormsSpace,
                          hecke.AmbientHeckeModule):
    """
    An ambient space of modular forms.
    """
    def __init__(self, group, weight, base_ring, character=None, eis_only=False):
        """
        Create an ambient space of modular forms.

        EXAMPLES::

            sage: m = ModularForms(Gamma1(20),20); m
            Modular Forms space of dimension 238 for Congruence Subgroup Gamma1(20) of weight 20 over Rational Field
            sage: m.is_ambient()
            True
        """
        if not arithgroup.is_CongruenceSubgroup(group):
            raise TypeError('group (=%s) must be a congruence subgroup' % group)
        weight = rings.Integer(weight)

        if character is None and arithgroup.is_Gamma0(group):
            character = dirichlet.TrivialCharacter(group.level(), base_ring)

        self._eis_only = eis_only
        space.ModularFormsSpace.__init__(self, group, weight, character, base_ring)
        if eis_only:
            d = self._dim_eisenstein()
        else:
            d = self.dimension()
        hecke.AmbientHeckeModule.__init__(self, base_ring, d, group.level(), weight)

    def _repr_(self):
        """
        Return string representation of self.

        EXAMPLES::

            sage: m = ModularForms(Gamma1(20),100); m._repr_()
            'Modular Forms space of dimension 1198 for Congruence Subgroup Gamma1(20) of weight 100 over Rational Field'

        The output of _repr_ is not affected by renaming the space::

            sage: m.rename('A big modform space')
            sage: m
            A big modform space
            sage: m._repr_()
            'Modular Forms space of dimension 1198 for Congruence Subgroup Gamma1(20) of weight 100 over Rational Field'
        """
        if self._eis_only:
            return "Modular Forms space for %s of weight %s over %s" % (
                self.group(), self.weight(), self.base_ring())
        else:
            return "Modular Forms space of dimension %s for %s of weight %s over %s" % (
                self.dimension(), self.group(), self.weight(), self.base_ring())

    def _submodule_class(self):
        """
        Return the Python class of submodules of this modular forms space.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(20),2)
            sage: m._submodule_class()
            <class 'sage.modular.modform.submodule.ModularFormsSubmodule'>
        """
        return submodule.ModularFormsSubmodule

    def change_ring(self, base_ring):
        """
        Change the base ring of this space of modular forms.

        INPUT:


        -  ``R`` - ring


        EXAMPLES::

            sage: M = ModularForms(Gamma0(37),2)
            sage: M.basis()
            [
            q + q^3 - 2*q^4 + O(q^6),
            q^2 + 2*q^3 - 2*q^4 + q^5 + O(q^6),
            1 + 2/3*q + 2*q^2 + 8/3*q^3 + 14/3*q^4 + 4*q^5 + O(q^6)
            ]

        The basis after changing the base ring is the reduction modulo
        `3` of an integral basis.

        ::

            sage: M3 = M.change_ring(GF(3))
            sage: M3.basis()
            [
            q + q^3 + q^4 + O(q^6),
            q^2 + 2*q^3 + q^4 + q^5 + O(q^6),
            1 + q^3 + q^4 + 2*q^5 + O(q^6)
            ]
        """
        from . import constructor
        M = constructor.ModularForms(self.group(), self.weight(), base_ring, prec=self.prec(), eis_only=self._eis_only)
        return M

    @cached_method
    def dimension(self):
        """
        Return the dimension of this ambient space of modular forms,
        computed using a dimension formula (so it should be reasonably
        fast).

        EXAMPLES::

            sage: m = ModularForms(Gamma1(20),20)
            sage: m.dimension()
            238
        """
        return self._dim_eisenstein() + self._dim_cuspidal()

    def hecke_module_of_level(self, N):
        r"""
        Return the Hecke module of level N corresponding to self, which is the
        domain or codomain of a degeneracy map from self. Here N must be either
        a divisor or a multiple of the level of self.

        EXAMPLES::

            sage: ModularForms(25, 6).hecke_module_of_level(5)
            Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(5) of weight 6 over Rational Field
            sage: ModularForms(Gamma1(4), 3).hecke_module_of_level(8)
            Modular Forms space of dimension 7 for Congruence Subgroup Gamma1(8) of weight 3 over Rational Field
            sage: ModularForms(Gamma1(4), 3).hecke_module_of_level(9)
            Traceback (most recent call last):
            ...
            ValueError: N (=9) must be a divisor or a multiple of the level of self (=4)
        """
        if not (N % self.level() == 0 or self.level() % N == 0):
            raise ValueError("N (=%s) must be a divisor or a multiple of the level of self (=%s)" % (N, self.level()))
        from . import constructor
        return constructor.ModularForms(self.group()._new_group_from_level(N), self.weight(), self.base_ring(), prec=self.prec())

    def _degeneracy_raising_matrix(self, M, t):
        r"""
        Calculate the matrix of the degeneracy map from self to M corresponding
        to `f(q) \mapsto f(q^t)`. Here the level of M should be a multiple of
        the level of self, and t should divide the quotient.

        EXAMPLES::

            sage: ModularForms(22, 2)._degeneracy_raising_matrix(ModularForms(44, 2), 1)
            [  1   0  -1  -2   0   0   0   0   0]
            [  0   1   0  -2   0   0   0   0   0]
            [  0   0   0   0   1   0   0   0  24]
            [  0   0   0   0   0   1   0  -2  21]
            [  0   0   0   0   0   0   1   3 -10]
            sage: ModularForms(22, 2)._degeneracy_raising_matrix(ModularForms(44, 2), 2)
            [0 1 0 0 0 0 0 0 0]
            [0 0 0 1 0 0 0 0 0]
            [0 0 0 0 1 0 0 0 0]
            [0 0 0 0 0 0 1 0 0]
            [0 0 0 0 0 0 0 1 0]
        """
        from sage.matrix.matrix_space import MatrixSpace
        A = MatrixSpace(self.base_ring(), self.dimension(), M.dimension())
        d = M.sturm_bound() + 1
        q = self.an_element().qexp(d).parent().gen()
        im_gens = []
        for x in self.basis():
            fq = x.qexp(d)
            fqt = fq(q**t).add_bigoh(d)  # silly workaround for trac #5367
            im_gens.append(M(fqt))
        return A([M.coordinate_vector(u) for u in im_gens])

    def rank(self):
        r"""
        This is a synonym for ``self.dimension()``.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(20),4)
            sage: m.rank()
            12
            sage: m.dimension()
            12
        """
        return self.dimension()

    def ambient_space(self):
        """
        Return the ambient space that contains this ambient space. This is,
        of course, just this space again.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(3),30)
            sage: m.ambient_space() is m
            True
        """
        return self

    def is_ambient(self):
        """
        Return True if this an ambient space of modular forms.

        This is an ambient space, so this function always returns True.

        EXAMPLES::

            sage: ModularForms(11).is_ambient()
            True
            sage: CuspForms(11).is_ambient()
            False
        """
        return True

    @cached_method(key=lambda self, sign: rings.Integer(sign))  # convert sign to an Integer before looking this up in the cache
    def modular_symbols(self, sign=0):
        """
        Return the corresponding space of modular symbols with the given
        sign.

        EXAMPLES::

            sage: S = ModularForms(11,2)
            sage: S.modular_symbols()
            Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
            sage: S.modular_symbols(sign=1)
            Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field
            sage: S.modular_symbols(sign=-1)
            Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field

        ::

            sage: ModularForms(1,12).modular_symbols()
            Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
        """
        sign = rings.Integer(sign)
        return modsym.ModularSymbols(group=self.group(),
                                     weight=self.weight(),
                                     sign=sign,
                                     base_ring=self.base_ring())

    @cached_method
    def module(self):
        """
        Return the underlying free module corresponding to this space
        of modular forms.

        EXAMPLES::

            sage: m = ModularForms(Gamma1(13),10)
            sage: m.free_module()
            Vector space of dimension 69 over Rational Field
            sage: ModularForms(Gamma1(13),4, GF(49,'b')).free_module()
            Vector space of dimension 27 over Finite Field in b of size 7^2
        """
        d = self.dimension()
        return free_module.VectorSpace(self.base_ring(), d)

    # free_module -- stupid thing: there are functions in classes
    # ModularFormsSpace and HeckeModule that both do much the same
    # thing, and one has to override both of them!
    def free_module(self):
        """
        Return the free module underlying this space of modular forms.

        EXAMPLES::

            sage: ModularForms(37).free_module()
            Vector space of dimension 3 over Rational Field
        """
        return self.module()

    def prec(self, new_prec=None):
        """
        Set or get default initial precision for printing modular forms.

        INPUT:


        -  ``new_prec`` - positive integer (default: None)


        OUTPUT: if new_prec is None, returns the current precision.

        EXAMPLES::

            sage: M = ModularForms(1,12, prec=3)
            sage: M.prec()
            3

        ::

            sage: M.basis()
            [
            q - 24*q^2 + O(q^3),
            1 + 65520/691*q + 134250480/691*q^2 + O(q^3)
            ]

        ::

            sage: M.prec(5)
            5
            sage: M.basis()
            [
            q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5),
            1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4 + O(q^5)
            ]
        """
        if new_prec:
            self.__prec = new_prec
        try:
            return self.__prec
        except AttributeError:
            self.__prec = defaults.DEFAULT_PRECISION
        return self.__prec

    def set_precision(self, n):
        """
        Set the default precision for displaying elements of this space.

        EXAMPLES::

            sage: m = ModularForms(Gamma1(5),2)
            sage: m.set_precision(10)
            sage: m.basis()
            [
            1 + 60*q^3 - 120*q^4 + 240*q^5 - 300*q^6 + 300*q^7 - 180*q^9 + O(q^10),
            q + 6*q^3 - 9*q^4 + 27*q^5 - 28*q^6 + 30*q^7 - 11*q^9 + O(q^10),
            q^2 - 4*q^3 + 12*q^4 - 22*q^5 + 30*q^6 - 24*q^7 + 5*q^8 + 18*q^9 + O(q^10)
            ]
            sage: m.set_precision(5)
            sage: m.basis()
            [
            1 + 60*q^3 - 120*q^4 + O(q^5),
            q + 6*q^3 - 9*q^4 + O(q^5),
            q^2 - 4*q^3 + 12*q^4 + O(q^5)
            ]
        """
        if n < 0:
            raise ValueError("n (=%s) must be >= 0" % n)
        self.__prec = rings.Integer(n)

    ####################################################################
    # Computation of Special Submodules
    ####################################################################
    @cached_method
    def cuspidal_submodule(self):
        """
        Return the cuspidal submodule of this ambient module.

        EXAMPLES::

            sage: ModularForms(Gamma1(13)).cuspidal_submodule()
            Cuspidal subspace of dimension 2 of Modular Forms space of dimension 13 for
            Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
        """
        from .cuspidal_submodule import CuspidalSubmodule
        return CuspidalSubmodule(self)

    @cached_method
    def eisenstein_submodule(self):
        """
        Return the Eisenstein submodule of this ambient module.

        EXAMPLES::

            sage: m = ModularForms(Gamma1(13),2); m
            Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
            sage: m.eisenstein_submodule()
            Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
        """
        return eisenstein_submodule.EisensteinSubmodule(self)

    @cached_method(key=lambda self, p: (rings.Integer(p) if p is not None else p))  # convert p to an Integer before looking this up in the cache
    def new_submodule(self, p=None):
        """
        Return the new or `p`-new submodule of this ambient
        module.

        INPUT:


        -  ``p`` - (default: None), if specified return only
           the `p`-new submodule.


        EXAMPLES::

            sage: m = ModularForms(Gamma0(33),2); m
            Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field
            sage: m.new_submodule()
            Modular Forms subspace of dimension 1 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field

        Another example::

            sage: M = ModularForms(17,4)
            sage: N = M.new_subspace(); N
            Modular Forms subspace of dimension 4 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(17) of weight 4 over Rational Field
            sage: N.basis()
            [
            q + 2*q^5 + O(q^6),
            q^2 - 3/2*q^5 + O(q^6),
            q^3 + O(q^6),
            q^4 - 1/2*q^5 + O(q^6)
            ]

        ::

            sage: ModularForms(12,4).new_submodule()
            Modular Forms subspace of dimension 1 of Modular Forms space of dimension 9 for Congruence Subgroup Gamma0(12) of weight 4 over Rational Field

        Unfortunately (TODO) - `p`-new submodules aren't yet
        implemented::

            sage: m.new_submodule(3)            # not implemented
            Traceback (most recent call last):
            ...
            NotImplementedError
            sage: m.new_submodule(11)           # not implemented
            Traceback (most recent call last):
            ...
            NotImplementedError
        """
        if p is not None:
            p = rings.Integer(p)
            if not p.is_prime():
                raise ValueError("p (=%s) must be a prime or None." % p)
        return self.cuspidal_submodule().new_submodule(p) + self.eisenstein_submodule().new_submodule(p)

    def _q_expansion(self, element, prec):
        r"""
        Return the q-expansion of a particular element of this space of
        modular forms, where the element should be a vector, list, or tuple
        (not a ModularFormElement). Here element should have length =
        self.dimension(). If element = [ a_i ] and self.basis() = [ v_i
        ], then we return `\sum a_i v_i`.

        INPUT:


        -  ``element`` - vector, list or tuple

        -  ``prec`` - desired precision of q-expansion


        EXAMPLES::

            sage: m = ModularForms(Gamma0(23),2); m
            Modular Forms space of dimension 3 for Congruence Subgroup Gamma0(23) of weight 2 over Rational Field
            sage: m.basis()
            [
            q - q^3 - q^4 + O(q^6),
            q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6),
            1 + 12/11*q + 36/11*q^2 + 48/11*q^3 + 84/11*q^4 + 72/11*q^5 + O(q^6)
            ]
            sage: m._q_expansion([1,2,0], 5)
            q + 2*q^2 - 5*q^3 - 3*q^4 + O(q^5)
        """
        B = self.q_expansion_basis(prec)
        f = self._q_expansion_zero()
        for i in range(len(element)):
            if element[i]:
                f += element[i] * B[i]
        return f

    ####################################################################
    # Computations of Dimensions
    ####################################################################
    @cached_method
    def _dim_cuspidal(self):
        r"""
        Return the dimension of the cuspidal subspace of this ambient
        modular forms space.

        For weights `k \ge 2` this is computed using a
        dimension formula. For weight 1, it will trigger a computation of a
        basis of `q`-expansions using Schaeffer's algorithm, unless this space
        is a space of Eisenstein forms only, in which case we just return 0.

        EXAMPLES::

            sage: m = ModularForms(GammaH(11,[3]), 2); m
            Modular Forms space of dimension 2 for Congruence Subgroup Gamma_H(11) with H generated by [3] of weight 2 over Rational Field
            sage: m._dim_cuspidal()
            1
            sage: m = ModularForms(DirichletGroup(389,CyclotomicField(4)).0,3); m._dim_cuspidal()
            64
            sage: m = ModularForms(GammaH(31, [7]), 1)
            sage: m._dim_cuspidal()
            1
            sage: m = ModularForms(GammaH(31, [7]), 1, eis_only=True)
            sage: m._dim_cuspidal()
            0
        """
        if self._eis_only:
            return 0
        if arithgroup.is_Gamma1(self.group()) and self.character() is not None:
            return self.group().dimension_cusp_forms(self.weight(),
                                                     self.character())
        else:
            return self.group().dimension_cusp_forms(self.weight())

    @cached_method
    def _dim_eisenstein(self):
        """
        Return the dimension of the Eisenstein subspace of this modular
        symbols space, computed using a dimension formula.

        EXAMPLES::

            sage: m = ModularForms(GammaH(13,[4]), 2); m
            Modular Forms space of dimension 3 for Congruence Subgroup Gamma_H(13) with H generated by [4] of weight 2 over Rational Field
            sage: m._dim_eisenstein()
            3

            sage: m = ModularForms(DirichletGroup(13).0,7); m
            Modular Forms space of dimension 8, character [zeta12] and weight 7 over Cyclotomic Field of order 12 and degree 4
            sage: m._dim_eisenstein()
            2
            sage: m._dim_cuspidal()
            6

        Test that :trac:`24030` is fixed::

            sage: ModularForms(GammaH(40, [21]), 1).dimension() # indirect doctest
            16
        """
        if arithgroup.is_Gamma1(self.group()) and self.character() is not None:
            return self.group().dimension_eis(self.weight(), self.character())
        else:
            return self.group().dimension_eis(self.weight())

    @cached_method
    def _dim_new_cuspidal(self):
        """
        Return the dimension of the new cuspidal subspace, computed using
        dimension formulas.

        EXAMPLES::

            sage: m = ModularForms(GammaH(11,[2]), 2); m._dim_new_cuspidal()
            1
            sage: m = ModularForms(DirichletGroup(33).0,7); m
            Modular Forms space of dimension 26, character [-1, 1] and weight 7 over Rational Field
            sage: m._dim_new_cuspidal()
            20
            sage: m._dim_cuspidal()
            22
        """
        if arithgroup.is_Gamma1(self.group()) and self.character() is not None:
            return self.group().dimension_new_cusp_forms(self.weight(), self.character())
        else:
            return self.group().dimension_new_cusp_forms(self.weight())

    @cached_method
    def _dim_new_eisenstein(self):
        """
        Return the dimension of the new Eisenstein subspace, computed
        by enumerating all Eisenstein series of the appropriate level.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(11), 4)
            sage: m._dim_new_eisenstein()
            0
            sage: m = ModularForms(Gamma0(11), 2)
            sage: m._dim_new_eisenstein()
            1
            sage: m = ModularForms(DirichletGroup(36).0,5); m
            Modular Forms space of dimension 28, character [-1, 1] and weight 5 over Rational Field
            sage: m._dim_new_eisenstein()
            2
            sage: m._dim_eisenstein()
            8
        """
        if arithgroup.is_Gamma0(self.group()) and self.weight() == 2:
            if is_prime(self.level()):
                d = 1
            else:
                d = 0
        else:
            E = self.eisenstein_series()
            d = len([g for g in E if g.new_level() == self.level()])
        return d

    ####################################################################
    # Computations of all Eisenstein series in self
    ####################################################################

    @cached_method
    def eisenstein_params(self):
        """
        Return parameters that define all Eisenstein series in self.

        OUTPUT: an immutable Sequence

        EXAMPLES::

            sage: m = ModularForms(Gamma0(22), 2)
            sage: v = m.eisenstein_params(); v
            [(Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, 2), (Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, 11), (Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, Dirichlet character modulo 22 of conductor 1 mapping 13 |--> 1, 22)]
            sage: type(v)
            <class 'sage.structure.sequence.Sequence_generic'>
        """
        eps = self.character()
        if eps is None:
            if arithgroup.is_Gamma1(self.group()):
                eps = self.level()
            else:
                raise NotImplementedError
        params = eis_series.compute_eisenstein_params(eps, self.weight())
        return Sequence(params, immutable=True)

    def eisenstein_series(self):
        """
        Return all Eisenstein series associated to this space.

        ::

            sage: ModularForms(27,2).eisenstein_series()
            [
            q^3 + O(q^6),
            q - 3*q^2 + 7*q^4 - 6*q^5 + O(q^6),
            1/12 + q + 3*q^2 + q^3 + 7*q^4 + 6*q^5 + O(q^6),
            1/3 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6),
            13/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6)
            ]

        ::

            sage: ModularForms(Gamma1(5),3).eisenstein_series()
            [
            -1/5*zeta4 - 2/5 + q + (4*zeta4 + 1)*q^2 + (-9*zeta4 + 1)*q^3 + (4*zeta4 - 15)*q^4 + q^5 + O(q^6),
            q + (zeta4 + 4)*q^2 + (-zeta4 + 9)*q^3 + (4*zeta4 + 15)*q^4 + 25*q^5 + O(q^6),
            1/5*zeta4 - 2/5 + q + (-4*zeta4 + 1)*q^2 + (9*zeta4 + 1)*q^3 + (-4*zeta4 - 15)*q^4 + q^5 + O(q^6),
            q + (-zeta4 + 4)*q^2 + (zeta4 + 9)*q^3 + (-4*zeta4 + 15)*q^4 + 25*q^5 + O(q^6)
            ]

        ::

            sage: eps = DirichletGroup(13).0^2
            sage: ModularForms(eps,2).eisenstein_series()
            [
            -7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6),
            q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6)
            ]
        """
        return self.eisenstein_submodule().eisenstein_series()

    def _compute_q_expansion_basis(self, prec):
        """
        EXAMPLES::

            sage: m = ModularForms(11,4)
            sage: m._compute_q_expansion_basis(5)
            [q + 3*q^3 - 6*q^4 + O(q^5), q^2 - 4*q^3 + 2*q^4 + O(q^5), 1 + O(q^5), q + 9*q^2 + 28*q^3 + 73*q^4 + O(q^5)]
        """
        S = self.cuspidal_submodule()
        E = self.eisenstein_submodule()
        B_S = S._compute_q_expansion_basis(prec)
        B_E = E._compute_q_expansion_basis(prec)
        return B_S + B_E

    def _compute_hecke_matrix(self, n):
        """
        Compute the matrix of the Hecke operator T_n acting on self.

        NOTE:

        If self is a level 1 space, the much faster Victor Miller basis
        is used for this computation.

        EXAMPLES::

            sage: M = ModularForms(11, 2)
            sage: M._compute_hecke_matrix(6)
            [ 2  0]
            [ 0 12]

        Check that :trac:`22780` is fixed::

            sage: M = ModularForms(1, 12)
            sage: M._compute_hecke_matrix(2)
            [ -24    0]
            [   0 2049]
            sage: ModularForms(1, 2).hecke_matrix(2)
            []

        TESTS:

        The following Hecke matrix is 43x43 with very large integer entries.
        We test it indirectly by computing the product and the sum of its
        eigenvalues, and reducing these two integers modulo all the primes
        less than 100::

            sage: M = ModularForms(1, 512)
            sage: t = M._compute_hecke_matrix(5)     # long time (2s)
            sage: t[-1, -1] == 1 + 5^511             # long time (0s, depends on above)
            True
            sage: f = t.charpoly()                   # long time (4s)
            sage: [f[0]%p for p in prime_range(100)] # long time (0s, depends on above)
            [0, 0, 0, 0, 1, 9, 2, 7, 0, 0, 0, 0, 1, 12, 9, 16, 37, 0, 21, 11, 70, 22, 0, 58, 76]
            sage: [f[42]%p for p in prime_range(100)] # long time (0s, depends on above)
            [0, 0, 4, 0, 10, 4, 4, 8, 12, 1, 23, 13, 10, 27, 20, 13, 16, 59, 53, 41, 11, 13, 12, 6, 82]
        """
        if self.level() == 1:
            k = self.weight()
            d = self.dimension()
            if d == 0:
                return matrix(self.base_ring(), 0, 0, [])
            from sage.modular.all import victor_miller_basis, hecke_operator_on_basis
            vmb = victor_miller_basis(k, prec=d * n + 1)[1:]
            Tcusp = hecke_operator_on_basis(vmb, n, k)
            return Tcusp.block_sum(matrix(self.base_ring(), 1, 1,
                                          [sigma(n, k - 1)]))
        else:
            return space.ModularFormsSpace._compute_hecke_matrix(self, n)

    def _compute_hecke_matrix_prime_power(self, p, r):
        r"""
        Compute the Hecke matrix `T_{p^r}`, where `p` is prime and `r \ge 2`.

        This is an internal method.  End users are encouraged to use the
        method hecke_matrix() instead.

        TESTS:

            sage: M = ModularForms(1, 12)
            sage: M._compute_hecke_matrix_prime_power(5, 3)
            [           -359001100500                        0]
            [                       0 116415324211120654296876]
            sage: delta_qexp(126)[125]
            -359001100500
            sage: eisenstein_series_qexp(12, 126)[125]
            116415324211120654296876
        """
        if self.level() == 1:
            return self._compute_hecke_matrix(p**r)
        else:
            return space.ModularFormsSpace._compute_hecke_matrix_prime_power(self, p, r)

    def hecke_polynomial(self, n, var='x'):
        r"""
        Compute the characteristic polynomial of the Hecke operator T_n acting
        on this space. Except in level 1, this is computed via modular symbols,
        and in particular is faster to compute than the matrix itself.

        EXAMPLES::

            sage: ModularForms(17,4).hecke_polynomial(2)
            x^6 - 16*x^5 + 18*x^4 + 608*x^3 - 1371*x^2 - 4968*x + 7776

        Check that this gives the same answer as computing the actual Hecke
        matrix (which is generally slower)::

            sage: ModularForms(17,4).hecke_matrix(2).charpoly()
            x^6 - 16*x^5 + 18*x^4 + 608*x^3 - 1371*x^2 - 4968*x + 7776
        """
        return self.cuspidal_submodule().hecke_polynomial(n, var) * self.eisenstein_submodule().hecke_polynomial(n, var)
Esempio n. 14
0
class ModularFormsAmbient_eps(ModularFormsAmbient):
    """
    A space of modular forms with character.
    """
    def __init__(self, character, weight=2, base_ring=None, eis_only=False):
        """
        Create an ambient modular forms space with character.

        .. note::

           The base ring must be of characteristic 0.  The ambient_R
           Python module is used for computing in characteristic p,
           which we view as the reduction of characteristic 0.

        INPUT:

        - ``weight`` - int

        - ``character`` - dirichlet.DirichletCharacter

        - ``base_ring`` - base field

        EXAMPLES::

            sage: m = ModularForms(DirichletGroup(11).0,3); m
            Modular Forms space of dimension 3, character [zeta10] and weight 3 over Cyclotomic Field of order 10 and degree 4
            sage: type(m)
            <class 'sage.modular.modform.ambient_eps.ModularFormsAmbient_eps_with_category'>
        """
        if not dirichlet.is_DirichletCharacter(character):
            raise TypeError("character (=%s) must be a Dirichlet character" %
                            character)
        if base_ring is None:
            base_ring = character.base_ring()
        if character.base_ring() != base_ring:
            character = character.change_ring(base_ring)
        if base_ring.characteristic() != 0:
            raise ValueError("the base ring must have characteristic 0.")
        group = arithgroup.Gamma1(character.modulus())
        base_ring = character.base_ring()
        ModularFormsAmbient.__init__(self, group, weight, base_ring, character,
                                     eis_only)

    def _repr_(self):
        """
        String representation of this space with character.

        EXAMPLES::

            sage: m = ModularForms(DirichletGroup(8).1,2)
            sage: m._repr_()
            'Modular Forms space of dimension 2, character [1, -1] and weight 2 over Rational Field'

            sage: m = ModularForms(DirichletGroup(31, QQ).0, 1, eis_only=True)
            sage: m._repr_()
            'Modular Forms space of character [-1] and weight 1 over Rational Field'

        You can rename the space with the rename command.

        ::

            sage: m.rename('Modforms of level 8')
            sage: m
            Modforms of level 8
        """
        if self._eis_only:
            return "Modular Forms space of character %s and weight %s over %s" % (
                self.character()._repr_short_(), self.weight(),
                self.base_ring())
        else:
            return "Modular Forms space of dimension %s, character %s and weight %s over %s" % (
                self.dimension(), self.character()._repr_short_(),
                self.weight(), self.base_ring())

    @cached_method
    def cuspidal_submodule(self):
        """
        Return the cuspidal submodule of this ambient space of modular forms.

        EXAMPLES::

            sage: eps = DirichletGroup(4).0
            sage: M = ModularForms(eps, 5); M
            Modular Forms space of dimension 3, character [-1] and weight 5 over Rational Field
            sage: M.cuspidal_submodule()
            Cuspidal subspace of dimension 1 of Modular Forms space of dimension 3, character [-1] and weight 5 over Rational Field
        """
        if self.weight() > 1:
            return cuspidal_submodule.CuspidalSubmodule_eps(self)
        else:
            return cuspidal_submodule.CuspidalSubmodule_wt1_eps(self)

    def change_ring(self, base_ring):
        """
        Return space with same defining parameters as this ambient
        space of modular symbols, but defined over a different base
        ring.

        EXAMPLES::

            sage: m = ModularForms(DirichletGroup(13).0^2,2); m
            Modular Forms space of dimension 3, character [zeta6] and weight 2 over Cyclotomic Field of order 6 and degree 2
            sage: m.change_ring(CyclotomicField(12))
            Modular Forms space of dimension 3, character [zeta6] and weight 2 over Cyclotomic Field of order 12 and degree 4

        It must be possible to change the ring of the underlying Dirichlet character::

            sage: m.change_ring(QQ)
            Traceback (most recent call last):
            ...
            TypeError: Unable to coerce zeta6 to a rational
        """
        if self.base_ring() == base_ring:
            return self
        return ambient_R.ModularFormsAmbient_R(self, base_ring=base_ring)

    @cached_method(
        key=lambda self, sign: rings.Integer(sign)
    )  # convert sign to an Integer before looking this up in the cache
    def modular_symbols(self, sign=0):
        """
        Return corresponding space of modular symbols with given sign.

        EXAMPLES::

            sage: eps = DirichletGroup(13).0
            sage: M = ModularForms(eps^2, 2)
            sage: M.modular_symbols()
            Modular Symbols space of dimension 4 and level 13, weight 2, character [zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
            sage: M.modular_symbols(1)
            Modular Symbols space of dimension 3 and level 13, weight 2, character [zeta6], sign 1, over Cyclotomic Field of order 6 and degree 2
            sage: M.modular_symbols(-1)
            Modular Symbols space of dimension 1 and level 13, weight 2, character [zeta6], sign -1, over Cyclotomic Field of order 6 and degree 2
            sage: M.modular_symbols(2)
            Traceback (most recent call last):
            ...
            ValueError: sign must be -1, 0, or 1
        """
        sign = rings.Integer(sign)
        return modsym.ModularSymbols(self.character(),
                                     weight=self.weight(),
                                     sign=sign,
                                     base_ring=self.base_ring())

    @cached_method
    def eisenstein_submodule(self):
        """
        Return the submodule of this ambient module with character that is
        spanned by Eisenstein series.  This is the Hecke stable complement
        of the cuspidal submodule.

        EXAMPLES::

            sage: m = ModularForms(DirichletGroup(13).0^2,2); m
            Modular Forms space of dimension 3, character [zeta6] and weight 2 over Cyclotomic Field of order 6 and degree 2
            sage: m.eisenstein_submodule()
            Eisenstein subspace of dimension 2 of Modular Forms space of dimension 3, character [zeta6] and weight 2 over Cyclotomic Field of order 6 and degree 2
        """
        return eisenstein_submodule.EisensteinSubmodule_eps(self)

    def hecke_module_of_level(self, N):
        r"""
        Return the Hecke module of level N corresponding to self, which is the
        domain or codomain of a degeneracy map from self. Here N must be either
        a divisor or a multiple of the level of self, and a multiple of the
        conductor of the character of self.

        EXAMPLES::

            sage: M = ModularForms(DirichletGroup(15).0, 3); M.character().conductor()
            3
            sage: M.hecke_module_of_level(3)
            Modular Forms space of dimension 2, character [-1] and weight 3 over Rational Field
            sage: M.hecke_module_of_level(5)
            Traceback (most recent call last):
            ...
            ValueError: conductor(=3) must divide M(=5)
            sage: M.hecke_module_of_level(30)
            Modular Forms space of dimension 16, character [-1, 1] and weight 3 over Rational Field
        """
        from . import constructor
        if N % self.level() == 0:
            return constructor.ModularForms(self.character().extend(N),
                                            self.weight(),
                                            self.base_ring(),
                                            prec=self.prec())
        elif self.level() % N == 0:
            return constructor.ModularForms(self.character().restrict(N),
                                            self.weight(),
                                            self.base_ring(),
                                            prec=self.prec())
        else:
            raise ValueError(
                "N (=%s) must be a divisor or a multiple of the level of self (=%s)"
                % (N, self.level()))