Esempio n. 1
0
def victor_miller_basis(k, prec=10, cusp_only=False, var='q'):
    r"""
    Compute and return the Victor Miller basis for modular forms of
    weight `k` and level 1 to precision `O(q^{prec})`.  If
    ``cusp_only`` is True, return only a basis for the cuspidal
    subspace.

    INPUT:

    - ``k`` -- an integer

    - ``prec`` -- (default: 10) a positive integer

    - ``cusp_only`` -- bool (default: False)

    - ``var`` -- string (default: 'q')

    OUTPUT:

        A sequence whose entries are power series in ``ZZ[[var]]``.

    EXAMPLES::

        sage: victor_miller_basis(1, 6)
        []
        sage: victor_miller_basis(0, 6)
        [
        1 + O(q^6)
        ]
        sage: victor_miller_basis(2, 6)
        []
        sage: victor_miller_basis(4, 6)
        [
        1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q^6)
        ]

        sage: victor_miller_basis(6, 6, var='w')
        [
        1 - 504*w - 16632*w^2 - 122976*w^3 - 532728*w^4 - 1575504*w^5 + O(w^6)
        ]

        sage: victor_miller_basis(6, 6)
        [
        1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(12, 6)
        [
        1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + O(q^6),
        q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
        ]

        sage: victor_miller_basis(12, 6, cusp_only=True)
        [
        q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(24, 6, cusp_only=True)
        [
        q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
        q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(24, 6)
        [
        1 + 52416000*q^3 + 39007332000*q^4 + 6609020221440*q^5 + O(q^6),
        q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
        q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(32, 6)
        [
        1 + 2611200*q^3 + 19524758400*q^4 + 19715347537920*q^5 + O(q^6),
        q + 50220*q^3 + 87866368*q^4 + 18647219790*q^5 + O(q^6),
        q^2 + 432*q^3 + 39960*q^4 - 1418560*q^5 + O(q^6)
        ]

        sage: victor_miller_basis(40,200)[1:] == victor_miller_basis(40,200,cusp_only=True)
        True
        sage: victor_miller_basis(200,40)[1:] == victor_miller_basis(200,40,cusp_only=True)
        True

    AUTHORS:

    - William Stein, Craig Citro: original code

    - Martin Raum (2009-08-02): use FLINT for polynomial arithmetic (instead of NTL)
    """
    k = Integer(k)
    if k%2 == 1 or k==2:
        return Sequence([])
    elif k < 0:
        raise ValueError("k must be non-negative")
    elif k == 0:
        return Sequence([PowerSeriesRing(ZZ,var)(1).add_bigoh(prec)], cr=True)
    e = k.mod(12)
    if e == 2: e += 12
    n = (k-e) // 12

    if n == 0 and cusp_only:
        return Sequence([])

    # If prec is less than or equal to the dimension of the space of
    # cusp forms, which is just n, then we know the answer, and we
    # simply return it.
    if prec <= n:
        q = PowerSeriesRing(ZZ,var).gen(0)
        err = bigO(q**prec)
        ls = [0] * (n+1)
        if not cusp_only:
            ls[0] = 1 + err
        for i in range(1,prec):
            ls[i] = q**i + err
        for i in range(prec,n+1):
            ls[i] = err
        return Sequence(ls, cr=True)

    F6 = eisenstein_series_poly(6,prec)

    if e == 0:
        A = Fmpz_poly(1)
    elif e == 4:
        A = eisenstein_series_poly(4,prec)
    elif e == 6:
        A = F6
    elif e == 8:
        A = eisenstein_series_poly(8,prec)
    elif e == 10:
        A = eisenstein_series_poly(10,prec)
    else: # e == 14
        A = eisenstein_series_poly(14,prec)

    if A[0] == -1 :
        A = -A

    if n == 0:
        return Sequence([PowerSeriesRing(ZZ,var)(A.list()).add_bigoh(prec)],cr=True)

    F6_squared = F6**2
    F6_squared._unsafe_mutate_truncate(prec)
    D = _delta_poly(prec)
    Fprod = F6_squared
    Dprod = D

    if cusp_only:
        ls = [Fmpz_poly(0)] + [A] * n
    else:
        ls = [A] * (n+1)

    for i in xrange(1,n+1):
        ls[n-i] *= Fprod
        ls[i] *= Dprod
        ls[n-i]._unsafe_mutate_truncate(prec)
        ls[i]._unsafe_mutate_truncate(prec)

        Fprod *= F6_squared
        Dprod *= D
        Fprod._unsafe_mutate_truncate(prec)
        Dprod._unsafe_mutate_truncate(prec)


    P = PowerSeriesRing(ZZ,var)
    if cusp_only :
        for i in xrange(1,n+1) :
            for j in xrange(1, i) :
                ls[j] = ls[j] - ls[j][i]*ls[i]

        return Sequence(map(lambda l: P(l.list()).add_bigoh(prec), ls[1:]),cr=True)
    else :
        for i in xrange(1,n+1) :
            for j in xrange(i) :
                ls[j] = ls[j] - ls[j][i]*ls[i]

        return Sequence(map(lambda l: P(l.list()).add_bigoh(prec), ls), cr=True)
Esempio n. 2
0
def victor_miller_basis(k, prec=10, cusp_only=False, var='q'):
    r"""
    Compute and return the Victor Miller basis for modular forms of
    weight `k` and level 1 to precision `O(q^{prec})`.  If
    ``cusp_only`` is True, return only a basis for the cuspidal
    subspace.

    INPUT:

    - ``k`` -- an integer

    - ``prec`` -- (default: 10) a positive integer

    - ``cusp_only`` -- bool (default: False)

    - ``var`` -- string (default: 'q')

    OUTPUT:

        A sequence whose entries are power series in ``ZZ[[var]]``.

    EXAMPLES::

        sage: victor_miller_basis(1, 6)
        []
        sage: victor_miller_basis(0, 6)
        [
        1 + O(q^6)
        ]
        sage: victor_miller_basis(2, 6)
        []
        sage: victor_miller_basis(4, 6)
        [
        1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + O(q^6)
        ]

        sage: victor_miller_basis(6, 6, var='w')
        [
        1 - 504*w - 16632*w^2 - 122976*w^3 - 532728*w^4 - 1575504*w^5 + O(w^6)
        ]

        sage: victor_miller_basis(6, 6)
        [
        1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(12, 6)
        [
        1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + O(q^6),
        q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
        ]

        sage: victor_miller_basis(12, 6, cusp_only=True)
        [
        q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(24, 6, cusp_only=True)
        [
        q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
        q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(24, 6)
        [
        1 + 52416000*q^3 + 39007332000*q^4 + 6609020221440*q^5 + O(q^6),
        q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
        q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)
        ]
        sage: victor_miller_basis(32, 6)
        [
        1 + 2611200*q^3 + 19524758400*q^4 + 19715347537920*q^5 + O(q^6),
        q + 50220*q^3 + 87866368*q^4 + 18647219790*q^5 + O(q^6),
        q^2 + 432*q^3 + 39960*q^4 - 1418560*q^5 + O(q^6)
        ]

        sage: victor_miller_basis(40,200)[1:] == victor_miller_basis(40,200,cusp_only=True)
        True
        sage: victor_miller_basis(200,40)[1:] == victor_miller_basis(200,40,cusp_only=True)
        True

    AUTHORS:

    - William Stein, Craig Citro: original code

    - Martin Raum (2009-08-02): use FLINT for polynomial arithmetic (instead of NTL)
    """
    k = Integer(k)
    if k % 2 == 1 or k == 2:
        return Sequence([])
    elif k < 0:
        raise ValueError("k must be non-negative")
    elif k == 0:
        return Sequence([PowerSeriesRing(ZZ, var)(1).add_bigoh(prec)], cr=True)
    e = k.mod(12)
    if e == 2: e += 12
    n = (k - e) // 12

    if n == 0 and cusp_only:
        return Sequence([])

    # If prec is less than or equal to the dimension of the space of
    # cusp forms, which is just n, then we know the answer, and we
    # simply return it.
    if prec <= n:
        q = PowerSeriesRing(ZZ, var).gen(0)
        err = bigO(q**prec)
        ls = [0] * (n + 1)
        if not cusp_only:
            ls[0] = 1 + err
        for i in range(1, prec):
            ls[i] = q**i + err
        for i in range(prec, n + 1):
            ls[i] = err
        return Sequence(ls, cr=True)

    F6 = eisenstein_series_poly(6, prec)

    if e == 0:
        A = Fmpz_poly(1)
    elif e == 4:
        A = eisenstein_series_poly(4, prec)
    elif e == 6:
        A = F6
    elif e == 8:
        A = eisenstein_series_poly(8, prec)
    elif e == 10:
        A = eisenstein_series_poly(10, prec)
    else:  # e == 14
        A = eisenstein_series_poly(14, prec)

    if A[0] == -1:
        A = -A

    if n == 0:
        return Sequence([PowerSeriesRing(ZZ, var)(A.list()).add_bigoh(prec)],
                        cr=True)

    F6_squared = F6**2
    F6_squared._unsafe_mutate_truncate(prec)
    D = _delta_poly(prec)
    Fprod = F6_squared
    Dprod = D

    if cusp_only:
        ls = [Fmpz_poly(0)] + [A] * n
    else:
        ls = [A] * (n + 1)

    for i in xrange(1, n + 1):
        ls[n - i] *= Fprod
        ls[i] *= Dprod
        ls[n - i]._unsafe_mutate_truncate(prec)
        ls[i]._unsafe_mutate_truncate(prec)

        Fprod *= F6_squared
        Dprod *= D
        Fprod._unsafe_mutate_truncate(prec)
        Dprod._unsafe_mutate_truncate(prec)

    P = PowerSeriesRing(ZZ, var)
    if cusp_only:
        for i in xrange(1, n + 1):
            for j in xrange(1, i):
                ls[j] = ls[j] - ls[j][i] * ls[i]

        return Sequence([P(l.list()).add_bigoh(prec) for l in ls[1:]], cr=True)
    else:
        for i in xrange(1, n + 1):
            for j in xrange(i):
                ls[j] = ls[j] - ls[j][i] * ls[i]

        return Sequence([P(l.list()).add_bigoh(prec) for l in ls], cr=True)