Esempio n. 1
0
def solve_mod(eqns, modulus, solution_dict=False):
    r"""
    Return all solutions to an equation or list of equations modulo the
    given integer modulus. Each equation must involve only polynomials
    in 1 or many variables.

    By default the solutions are returned as `n`-tuples, where `n`
    is the number of variables appearing anywhere in the given
    equations. The variables are in alphabetical order.

    INPUT:


    -  ``eqns`` - equation or list of equations

    -  ``modulus`` - an integer

    -  ``solution_dict`` - bool (default: False); if True or non-zero,
       return a list of dictionaries containing the solutions. If there
       are no solutions, return an empty list (rather than a list containing
       an empty dictionary). Likewise, if there's only a single solution,
       return a list containing one dictionary with that solution.


    EXAMPLES::

        sage: var('x,y')
        (x, y)
        sage: solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14)
        [(4, 2), (4, 6), (4, 9), (4, 13)]
        sage: solve_mod([x^2 == 1, 4*x  == 11], 15)
        [(14,)]

    Fermat's equation modulo 3 with exponent 5::

        sage: var('x,y,z')
        (x, y, z)
        sage: solve_mod([x^5 + y^5 == z^5], 3)
        [(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)]

    We can solve with respect to a bigger modulus if it consists only of small prime factors::

        sage: [d] = solve_mod([5*x + y == 3, 2*x - 3*y == 9], 3*5*7*11*19*23*29, solution_dict = True)
        sage: d[x]
        12915279
        sage: d[y]
        8610183

    For cases where there are relatively few solutions and the prime
    factors are small, this can be efficient even if the modulus itself
    is large::

        sage: sorted(solve_mod([x^2 == 41], 10^20))
        [(4538602480526452429,), (11445932736758703821,), (38554067263241296179,),
        (45461397519473547571,), (54538602480526452429,), (61445932736758703821,),
        (88554067263241296179,), (95461397519473547571,)]

    We solve a simple equation modulo 2::

        sage: x,y = var('x,y')
        sage: solve_mod([x == y], 2)
        [(0, 0), (1, 1)]

    .. warning::

       The current implementation splits the modulus into prime
       powers, then naively enumerates all possible solutions
       (starting modulo primes and then working up through prime
       powers), and finally combines the solution using the Chinese
       Remainder Theorem.  The interface is good, but the algorithm is
       very inefficient if the modulus has some larger prime factors! Sage
       *does* have the ability to do something much faster in certain
       cases at least by using Groebner basis, linear algebra
       techniques, etc. But for a lot of toy problems this function as
       is might be useful. At least it establishes an interface.


    TESTS:

    Make sure that we short-circuit in at least some cases::

        sage: solve_mod([2*x==1], 2*next_prime(10^50))
        []

    Try multi-equation cases::

        sage: x, y, z = var("x y z")
        sage: solve_mod([2*x^2 + x*y, -x*y+2*y^2+x-2*y, -2*x^2+2*x*y-y^2-x-y], 12)
        [(0, 0), (4, 4), (0, 3), (4, 7)]
        sage: eqs = [-y^2+z^2, -x^2+y^2-3*z^2-z-1, -y*z-z^2-x-y+2, -x^2-12*z^2-y+z]
        sage: solve_mod(eqs, 11)
        [(8, 5, 6)]

    Confirm that modulus 1 now behaves as it should::

        sage: x, y = var("x y")
        sage: solve_mod([x==1], 1)
        [(0,)]
        sage: solve_mod([2*x^2+x*y, -x*y+2*y^2+x-2*y, -2*x^2+2*x*y-y^2-x-y], 1)
        [(0, 0)]


    """
    from sage.rings.all import Integer, Integers, crt_basis
    from sage.symbolic.expression import is_Expression
    from sage.misc.all import cartesian_product_iterator
    from sage.modules.all import vector
    from sage.matrix.all import matrix

    if not isinstance(eqns, (list, tuple)):
        eqns = [eqns]
    eqns = [eq if is_Expression(eq) else (eq.lhs() - eq.rhs()) for eq in eqns]
    modulus = Integer(modulus)
    if modulus < 1:
        raise ValueError("the modulus must be a positive integer")
    vars = list(set(sum([list(e.variables()) for e in eqns], [])))
    vars.sort(key=repr)

    if modulus == 1:  # degenerate case
        ans = [tuple(Integers(1)(0) for v in vars)]
        return ans

    factors = modulus.factor()
    crt_basis = vector(Integers(modulus),
                       crt_basis([p**i for p, i in factors]))
    solutions = []

    has_solution = True
    for p, i in factors:
        solution = _solve_mod_prime_power(eqns, p, i, vars)
        if len(solution) > 0:
            solutions.append(solution)
        else:
            has_solution = False
            break

    ans = []
    if has_solution:
        for solution in cartesian_product_iterator(solutions):
            solution_mat = matrix(Integers(modulus), solution)
            ans.append(
                tuple(
                    c.dot_product(crt_basis) for c in solution_mat.columns()))

    # if solution_dict == True:
    # Relaxed form suggested by Mike Hansen (#8553):
    if solution_dict:
        sol_dict = [dict(zip(vars, solution)) for solution in ans]
        return sol_dict
    else:
        return ans
Esempio n. 2
0
def solve_mod(eqns, modulus, solution_dict = False):
    r"""
    Return all solutions to an equation or list of equations modulo the
    given integer modulus. Each equation must involve only polynomials
    in 1 or many variables.

    By default the solutions are returned as `n`-tuples, where `n`
    is the number of variables appearing anywhere in the given
    equations. The variables are in alphabetical order.

    INPUT:


    -  ``eqns`` - equation or list of equations

    -  ``modulus`` - an integer

    -  ``solution_dict`` - bool (default: False); if True or non-zero,
       return a list of dictionaries containing the solutions. If there
       are no solutions, return an empty list (rather than a list containing
       an empty dictionary). Likewise, if there's only a single solution,
       return a list containing one dictionary with that solution.


    EXAMPLES::

        sage: var('x,y')
        (x, y)
        sage: solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14)
        [(4, 2), (4, 6), (4, 9), (4, 13)]
        sage: solve_mod([x^2 == 1, 4*x  == 11], 15)
        [(14,)]

    Fermat's equation modulo 3 with exponent 5::

        sage: var('x,y,z')
        (x, y, z)
        sage: solve_mod([x^5 + y^5 == z^5], 3)
        [(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 1, 0), (2, 2, 1)]

    We can solve with respect to a bigger modulus if it consists only of small prime factors::

        sage: [d] = solve_mod([5*x + y == 3, 2*x - 3*y == 9], 3*5*7*11*19*23*29, solution_dict = True)
        sage: d[x]
        12915279
        sage: d[y]
        8610183

    For cases where there are relatively few solutions and the prime
    factors are small, this can be efficient even if the modulus itself
    is large::

        sage: sorted(solve_mod([x^2 == 41], 10^20))
        [(4538602480526452429,), (11445932736758703821,), (38554067263241296179,),
        (45461397519473547571,), (54538602480526452429,), (61445932736758703821,),
        (88554067263241296179,), (95461397519473547571,)]

    We solve a simple equation modulo 2::

        sage: x,y = var('x,y')
        sage: solve_mod([x == y], 2)
        [(0, 0), (1, 1)]

    .. warning::

       The current implementation splits the modulus into prime
       powers, then naively enumerates all possible solutions
       (starting modulo primes and then working up through prime
       powers), and finally combines the solution using the Chinese
       Remainder Theorem.  The interface is good, but the algorithm is
       very inefficient if the modulus has some larger prime factors! Sage
       *does* have the ability to do something much faster in certain
       cases at least by using Groebner basis, linear algebra
       techniques, etc. But for a lot of toy problems this function as
       is might be useful. At least it establishes an interface.


    TESTS:

    Make sure that we short-circuit in at least some cases::

        sage: solve_mod([2*x==1], 2*next_prime(10^50))
        []

    Try multi-equation cases::

        sage: x, y, z = var("x y z")
        sage: solve_mod([2*x^2 + x*y, -x*y+2*y^2+x-2*y, -2*x^2+2*x*y-y^2-x-y], 12)
        [(0, 0), (4, 4), (0, 3), (4, 7)]
        sage: eqs = [-y^2+z^2, -x^2+y^2-3*z^2-z-1, -y*z-z^2-x-y+2, -x^2-12*z^2-y+z]
        sage: solve_mod(eqs, 11)
        [(8, 5, 6)]

    Confirm that modulus 1 now behaves as it should::

        sage: x, y = var("x y")
        sage: solve_mod([x==1], 1)
        [(0,)]
        sage: solve_mod([2*x^2+x*y, -x*y+2*y^2+x-2*y, -2*x^2+2*x*y-y^2-x-y], 1)
        [(0, 0)]


    """
    from sage.rings.all import Integer, Integers, crt_basis
    from sage.symbolic.expression import is_Expression
    from sage.misc.all import cartesian_product_iterator
    from sage.modules.all import vector
    from sage.matrix.all import matrix

    if not isinstance(eqns, (list, tuple)):
        eqns = [eqns]
    eqns = [eq if is_Expression(eq) else (eq.lhs()-eq.rhs()) for eq in eqns]
    modulus = Integer(modulus)
    if modulus < 1:
        raise ValueError("the modulus must be a positive integer")
    vars = list(set(sum([list(e.variables()) for e in eqns], [])))
    vars.sort(key=repr)

    if modulus == 1: # degenerate case
        ans = [tuple(Integers(1)(0) for v in vars)]
        return ans

    factors = modulus.factor()
    crt_basis = vector(Integers(modulus), crt_basis([p**i for p,i in factors]))
    solutions = []

    has_solution = True
    for p,i in factors:
        solution =_solve_mod_prime_power(eqns, p, i, vars)
        if len(solution) > 0:
            solutions.append(solution)
        else:
            has_solution = False
            break


    ans = []
    if has_solution:
        for solution in cartesian_product_iterator(solutions):
            solution_mat = matrix(Integers(modulus), solution)
            ans.append(tuple(c.dot_product(crt_basis) for c in solution_mat.columns()))

    # if solution_dict == True:
    # Relaxed form suggested by Mike Hansen (#8553):
    if solution_dict:
        sol_dict = [dict(zip(vars, solution)) for solution in ans]
        return sol_dict
    else:
        return ans