Esempio n. 1
0
 def _sollya_annotate(self, center, rad, polys):
     import sagesollya as sollya
     logger = logging.getLogger(__name__ + ".sollya")
     logger.info("calling annotatefunction() on %s derivatives", len(polys))
     center = QQ(center)
     sollya_fun = self._sollya_object
     # sollya keeps all annotations, let's not bother with selecting
     # the best one
     for ord, pol0 in enumerate(polys):
         pol = ZZ(ord).factorial() * pol0
         sollya_pol = sum(
             [c.center() * sollya.x**k for k, c in enumerate(pol)])
         dom = RIF(center - rad,
                   center + rad)  # XXX: dangerous when inexact
         err_pol = pol.map_coefficients(lambda c: c - c.squash())
         err = RIF(err_pol(RBF.zero().add_error(rad)))
         with sollya.settings(display=sollya.dyadic):
             logger = logging.getLogger(__name__ + ".sollya.annotate")
             logger.debug("annotatefunction(%s, %s, %s, %s, %s);",
                          sollya_fun, sollya_pol, sollya.SollyaObject(dom),
                          sollya.SollyaObject(err),
                          sollya.SollyaObject(center))
         sollya.annotatefunction(sollya_fun, sollya_pol, dom, err, center)
         sollya_fun = sollya.diff(sollya_fun)
     logger.info("...done")
Esempio n. 2
0
 def _disk(self, pt):
     assert pt.is_real()
     # Since approximation disks satisfy 2·rad ≤ dist(center, sing), any
     # approximation disk containing pt must have rad ≤ dist(pt, sing)
     max_rad = pt.dist_to_sing().min(self.max_rad)
     # What we want is the largest such disk containing pt
     expo = ZZ(max_rad.log(2).upper().ceil()) - 1  # rad = 2^expo
     logger.log(logging.DEBUG - 2, "max_rad = %s, expo = %s", max_rad, expo)
     while True:
         approx_pt = pt.approx_abs_real(-expo)
         mantissa = (approx_pt.squash() >> expo).floor()
         if ZZ(mantissa) % 2 == 0:
             mantissa += 1
         center = mantissa << expo
         dist = Point(center, pt.dop).dist_to_sing()
         rad = RBF.one() << expo
         logger.log(
             logging.DEBUG - 2,
             "candidate disk: approx_pt = %s, mantissa = %s, "
             "center = %s, dist = %s, rad = %s", approx_pt, mantissa,
             center, dist, rad)
         if safe_ge(dist >> 1, rad):
             break
         expo -= 1
     logger.debug("disk for %s: center=%s, rad=%s", pt, center, rad)
     # pt may be a ball with nonzero radius: check that it is contained in
     # our candidate disk
     log = RBF.zero() if 0 in approx_pt else approx_pt.abs().log(2)
     F = RealBallField(ZZ((expo - log).max(0).upper().ceil()) + 10)
     dist_to_center = (F(approx_pt) - F(center)).abs()
     if not safe_le(dist_to_center, rad):
         assert not safe_gt((approx_pt.squash() - center).squash(), rad)
         logger.info("check that |%s - %s| < %s failed", approx_pt, center,
                     rad)
         return None, None
     # exactify center so that subsequent computations are not limited by the
     # precision of its parent
     center = QQ(center)
     return center, rad