Esempio n. 1
0
def projective_point(p):
    """
    Return equivalent point with denominators removed

    INPUT:

    - ``P``, ``Q`` -- list/tuple of projective coordinates.

    OUTPUT:

    List of projective coordinates.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.constructor import projective_point
        sage: projective_point([4/5, 6/5, 8/5])
        [2, 3, 4]
        sage: F = GF(11)
        sage: projective_point([F(4), F(8), F(2)])
        [4, 8, 2]
    """
    from sage.rings.integer import GCD_list
    from sage.arith.functions import LCM_list
    try:
        p_gcd = GCD_list([x.numerator() for x in p])
        p_lcm = LCM_list(x.denominator() for x in p)
    except AttributeError:
        return p
    scale = p_lcm / p_gcd
    return [scale * x for x in p]
Esempio n. 2
0
    def _find_cusps(self):
        r"""
        Calculate the reduced representatives of the equivalence classes of
        cusps for this group. Adapted from code by Ron Evans.

        EXAMPLE::

            sage: Gamma(8).cusps() # indirect doctest
            [0, 1/4, 1/3, 3/8, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 5/3, 2, 7/3, 5/2, 8/3, 3, 7/2, 11/3, 4, 14/3, 5, 6, 7, Infinity]
        """
        n = self.level()
        C = [QQ(x) for x in xrange(n)]

        n0 = n // 2
        n1 = (n + 1) // 2

        for r in xrange(1, n1):
            if r > 1 and gcd(r, n) == 1:
                C.append(ZZ(r) / ZZ(n))
            if n0 == n / 2 and gcd(r, n0) == 1:
                C.append(ZZ(r) / ZZ(n0))

        for s in xrange(2, n1):
            for r in xrange(1, 1 + n):
                if GCD_list([s, r, n]) == 1:
                    # GCD_list is ~40x faster than gcd, since gcd wastes loads
                    # of time initialising a Sequence type.
                    u, v = _lift_pair(r, s, n)
                    C.append(ZZ(u) / ZZ(v))

        return [Cusp(x) for x in sorted(C)] + [Cusp(1, 0)]
Esempio n. 3
0
    def base_rays(self, fiber, points):
        r"""
        Return the primitive lattice vectors that generate the
        direction given by the base projection of points.

        INPUT:

        - ``fiber`` -- a sub-lattice polytope defining the
          :meth:`base_projection`.

        - ``points`` -- the points to project to the base.

        OUTPUT:

        A tuple of primitive `\ZZ`-vectors.

        EXAMPLES::

            sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
            sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0))
            sage: fiber = next(poly.fibration_generator(2))
            sage: poly.base_rays(fiber, poly.integral_points_not_interior_to_facets())
            ((-1, -1), (0, 1), (1, 0))

            sage: p = LatticePolytope_PPL((1,0),(1,2),(-1,0))
            sage: f = LatticePolytope_PPL((1,0),(-1,0))
            sage: p.base_rays(f, p.integral_points())
            ((1),)
        """
        quo = self.base_projection(fiber)
        vertices = set()
        for p in points:
            v = quo(p).vector()
            if v.is_zero():
                continue
            d = GCD_list(v.list())
            if d > 1:
                v = v.__copy__()
                for i in range(v.degree()):
                    v[i] /= d
                v.set_immutable()
            vertices.add(v)
        return tuple(sorted(vertices))
Esempio n. 4
0
from sage.rings.integer import GCD_list

f = open('B-large.in', 'r')
fout = open('B-large.out', 'w')
C = int(f.readline().strip())
for c in range(C):
    line = f.readline().strip().split()
    N = int(line[0])
    ti = [int(line[i + 1]) for i in range(N)]
    ti.sort()
    diffs = [ti[i + 1] - ti[i] for i in range(N - 1)]
    #print diffs
    #w = GCD_list(diffs)
    #print w
    #print (-ti[0]) % w
    fout.write('Case #%d: ' % (c+1))
    fout.write(str((-ti[0]) % GCD_list(diffs)))
    fout.write('\n')