def _repr_(self):
        """
        EXAMPLES::

            sage: K = KontsevichGraphSums(QQ)
            sage: KG = KontsevichGraph(ground_vertices=(), immutable=True)
            sage: KontsevichGraphSum(K, [(1/2, KG)])
            1/2*(Kontsevich graph with 0 vertices on 0 ground vertices)
        """
        self.reduce()
        if self._terms == []:
            return '0'
        parenthesize = lambda c: str(c)
        if is_SymbolicExpressionRing(self.base_ring()):
            from sage.symbolic.operators import add_vararg
            is_sum = lambda x: self.base_ring()(x).operator() == add_vararg
            parenthesize = lambda c: '(%s)' % c if is_sum(c) else c
        return ' + '.join('%s*(%s)' % (parenthesize(c), g)
                          for (c,g) in self._terms)
Esempio n. 2
0
    def dynatomic_polynomial(self, period):
        r"""
        Compute the (affine) dynatomic polynomial of a dynamical system
        `f: \mathbb{A}^1 \to \mathbb{A}^1`.

        The dynatomic polynomial is the analog of the cyclotomic polynomial
        and its roots are the points of formal period `n`.

        ALGORITHM:

        Homogenize to a map `f: \mathbb{P}^1 \to \mathbb{P}^1` and compute
        the dynatomic polynomial there. Then, dehomogenize.

        INPUT:

        - ``period`` -- a positive integer or a list/tuple `[m,n]`,
          where `m` is the preperiod and `n` is the period

        OUTPUT:

        If possible, a single variable polynomial in the coordinate ring
        of the polynomial. Otherwise a fraction field element of the
        coordinate ring of the polynomial.

        EXAMPLES::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: f = DynamicalSystem_affine([x^2+y^2, y^2])
            sage: f.dynatomic_polynomial(2)
            Traceback (most recent call last):
            ...
            TypeError: does not make sense in dimension >1

        ::

            sage: A.<x> = AffineSpace(ZZ, 1)
            sage: f = DynamicalSystem_affine([(x^2+1)/x])
            sage: f.dynatomic_polynomial(4)
            2*x^12 + 18*x^10 + 57*x^8 + 79*x^6 + 48*x^4 + 12*x^2 + 1

        ::

            sage: A.<x> = AffineSpace(CC, 1)
            sage: f = DynamicalSystem_affine([(x^2+1)/(3*x)])
            sage: f.dynatomic_polynomial(3)
            13.0000000000000*x^6 + 117.000000000000*x^4 + 78.0000000000000*x^2 +
            1.00000000000000

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: f = DynamicalSystem_affine([x^2-10/9])
            sage: f.dynatomic_polynomial([2, 1])
            531441*x^4 - 649539*x^2 - 524880

        ::

            sage: A.<x> = AffineSpace(CC, 1)
            sage: f = DynamicalSystem_affine([x^2+CC.0])
            sage: f.dynatomic_polynomial(2)
            x^2 + x + 1.00000000000000 + 1.00000000000000*I

        ::

            sage: K.<c> = FunctionField(QQ)
            sage: A.<x> = AffineSpace(K, 1)
            sage: f = DynamicalSystem_affine([x^2 + c])
            sage: f.dynatomic_polynomial(4)
            x^12 + 6*c*x^10 + x^9 + (15*c^2 + 3*c)*x^8 + 4*c*x^7 + (20*c^3 + 12*c^2 + 1)*x^6
            + (6*c^2 + 2*c)*x^5 + (15*c^4 + 18*c^3 + 3*c^2 + 4*c)*x^4 + (4*c^3 + 4*c^2 + 1)*x^3
            + (6*c^5 + 12*c^4 + 6*c^3 + 5*c^2 + c)*x^2 + (c^4 + 2*c^3 + c^2 + 2*c)*x
            + c^6 + 3*c^5 + 3*c^4 + 3*c^3 + 2*c^2 + 1

        ::

            sage: A.<z> = AffineSpace(QQ, 1)
            sage: f = DynamicalSystem_affine([z^2+3/z+1/7])
            sage: f.dynatomic_polynomial(1).parent()
            Multivariate Polynomial Ring in z over Rational Field

        ::

            sage: R.<c> = QQ[]
            sage: A.<z> = AffineSpace(R,1)
            sage: f = DynamicalSystem_affine([z^2 + c])
            sage: f.dynatomic_polynomial([1,1])
            z^2 + z + c

        ::

            sage: A.<x> = AffineSpace(CC,1)
            sage: F = DynamicalSystem_affine([1/2*x^2 + CC(sqrt(3))])
            sage: F.dynatomic_polynomial([1,1])
            (0.125000000000000*x^4 + 0.366025403784439*x^2 + 1.50000000000000)/(0.500000000000000*x^2 - x + 1.73205080756888)

        TESTS::

            sage: R.<c> = QQ[]
            sage: Pc.<x,y> = ProjectiveSpace(R, 1)
            sage: G = DynamicalSystem_projective([(1/2*c + 1/2)*x^2 + (-2*c)*x*y + 2*c*y^2 , \
                  (1/4*c + 1/2)*x^2 + (-c - 1)*x*y + (c + 1)*y^2])
            sage: G.dehomogenize(1).dynatomic_polynomial(2)
            (1/4*c + 1/4)*x^2 + (-c - 1/2)*x + c + 1
        """
        from sage.schemes.affine.affine_space import is_AffineSpace
        if not is_AffineSpace(self.domain()):
            raise NotImplementedError("not implemented for subschemes")
        if self.domain().dimension_relative() > 1:
            raise TypeError("does not make sense in dimension >1")
        G = self.homogenize(1)
        F = G.dynatomic_polynomial(period)
        T = G.domain().coordinate_ring()
        S = self.domain().coordinate_ring()
        if is_SymbolicExpressionRing(F.parent()):
            u = var(self.domain().coordinate_ring().variable_name())
            return F.subs({F.variables()[0]: u, F.variables()[1]: 1})
        elif T(F.denominator()).degree() == 0:
            R = F.parent()
            phi = R.hom([S.gen(0), 1], S)
            return phi(F)
        else:
            R = F.numerator().parent()
            phi = R.hom([S.gen(0), 1], S)
            return phi(F.numerator()) / phi(F.denominator())
Esempio n. 3
0
    def dynatomic_polynomial(self, period):
        r"""
        Compute the (affine) dynatomic polynomial of a dynamical system
        `f: \mathbb{A}^1 \to \mathbb{A}^1`.

        The dynatomic polynomial is the analog of the cyclotomic polynomial
        and its roots are the points of formal period `n`.

        ALGORITHM:

        Homogenize to a map `f: \mathbb{P}^1 \to \mathbb{P}^1` and compute
        the dynatomic polynomial there. Then, dehomogenize.

        INPUT:

        - ``period`` -- a positive integer or a list/tuple `[m,n]`,
          where `m` is the preperiod and `n` is the period

        OUTPUT:

        If possible, a single variable polynomial in the coordinate ring
        of the polynomial. Otherwise a fraction field element of the
        coordinate ring of the polynomial.

        EXAMPLES::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: f = DynamicalSystem_affine([x^2+y^2, y^2])
            sage: f.dynatomic_polynomial(2)
            Traceback (most recent call last):
            ...
            TypeError: does not make sense in dimension >1

        ::

            sage: A.<x> = AffineSpace(ZZ, 1)
            sage: f = DynamicalSystem_affine([(x^2+1)/x])
            sage: f.dynatomic_polynomial(4)
            2*x^12 + 18*x^10 + 57*x^8 + 79*x^6 + 48*x^4 + 12*x^2 + 1

        ::

            sage: A.<x> = AffineSpace(CC, 1)
            sage: f = DynamicalSystem_affine([(x^2+1)/(3*x)])
            sage: f.dynatomic_polynomial(3)
            13.0000000000000*x^6 + 117.000000000000*x^4 + 78.0000000000000*x^2 +
            1.00000000000000

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: f = DynamicalSystem_affine([x^2-10/9])
            sage: f.dynatomic_polynomial([2, 1])
            531441*x^4 - 649539*x^2 - 524880

        ::

            sage: A.<x> = AffineSpace(CC, 1)
            sage: f = DynamicalSystem_affine([x^2+CC.0])
            sage: f.dynatomic_polynomial(2)
            x^2 + x + 1.00000000000000 + 1.00000000000000*I

        ::

            sage: K.<c> = FunctionField(QQ)
            sage: A.<x> = AffineSpace(K, 1)
            sage: f = DynamicalSystem_affine([x^2 + c])
            sage: f.dynatomic_polynomial(4)
            x^12 + 6*c*x^10 + x^9 + (15*c^2 + 3*c)*x^8 + 4*c*x^7 + (20*c^3 + 12*c^2 + 1)*x^6
            + (6*c^2 + 2*c)*x^5 + (15*c^4 + 18*c^3 + 3*c^2 + 4*c)*x^4 + (4*c^3 + 4*c^2 + 1)*x^3
            + (6*c^5 + 12*c^4 + 6*c^3 + 5*c^2 + c)*x^2 + (c^4 + 2*c^3 + c^2 + 2*c)*x
            + c^6 + 3*c^5 + 3*c^4 + 3*c^3 + 2*c^2 + 1

        ::

            sage: A.<z> = AffineSpace(QQ, 1)
            sage: f = DynamicalSystem_affine([z^2+3/z+1/7])
            sage: f.dynatomic_polynomial(1).parent()
            Multivariate Polynomial Ring in z over Rational Field

        ::

            sage: R.<c> = QQ[]
            sage: A.<z> = AffineSpace(R,1)
            sage: f = DynamicalSystem_affine([z^2 + c])
            sage: f.dynatomic_polynomial([1,1])
            z^2 + z + c

        ::

            sage: A.<x> = AffineSpace(CC,1)
            sage: F = DynamicalSystem_affine([1/2*x^2 + CC(sqrt(3))])
            sage: F.dynatomic_polynomial([1,1])
            (0.125000000000000*x^4 + 0.366025403784439*x^2 + 1.50000000000000)/(0.500000000000000*x^2 - x + 1.73205080756888)
        """
        from sage.schemes.affine.affine_space import is_AffineSpace
        if not is_AffineSpace(self.domain()):
            raise NotImplementedError("not implemented for subschemes")
        if self.domain().dimension_relative() > 1:
            raise TypeError("does not make sense in dimension >1")
        G = self.homogenize(1)
        F = G.dynatomic_polynomial(period)
        T = G.domain().coordinate_ring()
        S = self.domain().coordinate_ring()
        if is_SymbolicExpressionRing(F.parent()):
            u = var(self.domain().coordinate_ring().variable_name())
            return F.subs({F.variables()[0]:u,F.variables()[1]:1})
        elif T(F.denominator()).degree() == 0:
            R = F.parent()
            phi = R.hom([S.gen(0), 1], S)
            return phi(F)
        else:
            R = F.numerator().parent()
            phi = R.hom([S.gen(0), 1], S)
            return phi(F.numerator())/phi(F.denominator())
Esempio n. 4
0
    def dynatomic_polynomial(self, period):
        r"""
        For a map `f:\mathbb{A}^1 \to \mathbb{A}^1` this function computes 
        the (affine) dynatomic polynomial.

        The dynatomic polynomial is the analog of the cyclotomic polynomial and its roots are the points
        of formal period `n`.

        ALGORITHM:

        Homogenize to a map `f:\mathbb{P}^1 \to \mathbb{P}^1` and compute the dynatomic polynomial there.
        Then, dehomogenize.

        INPUT:

        - ``period`` -- a positive integer or a list/tuple `[m,n]`,
          where `m` is the preperiod and `n` is the period.

        OUTPUT:

        - If possible, a single variable polynomial in the coordinate ring of the polynomial. \
          Otherwise a fraction field element of the coordinate ring of the polynomial.

        EXAMPLES::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: H = Hom(A, A)
            sage: f = H([x^2+y^2, y^2])
            sage: f.dynatomic_polynomial(2)
            Traceback (most recent call last):
            ...
            TypeError: does not make sense in dimension >1

        ::

            sage: A.<x> = AffineSpace(ZZ, 1)
            sage: H = Hom(A, A)
            sage: f = H([(x^2+1)/x])
            sage: f.dynatomic_polynomial(4)
            2*x^12 + 18*x^10 + 57*x^8 + 79*x^6 + 48*x^4 + 12*x^2 + 1

        ::

            sage: A.<x> = AffineSpace(CC, 1)
            sage: H = Hom(A, A)
            sage: f = H([(x^2+1)/(3*x)])
            sage: f.dynatomic_polynomial(3)
            13.0000000000000*x^6 + 117.000000000000*x^4 + 78.0000000000000*x^2 +
            1.00000000000000

        ::

            sage: A.<x> = AffineSpace(QQ, 1)
            sage: H = Hom(A, A)
            sage: f = H([x^2-10/9])
            sage: f.dynatomic_polynomial([2, 1])
            531441*x^4 - 649539*x^2 - 524880

        ::

            sage: A.<x> = AffineSpace(CC, 1)
            sage: H = Hom(A, A)
            sage: f = H([x^2+CC.0])
            sage: f.dynatomic_polynomial(2)
            x^2 + x + 1.00000000000000 + 1.00000000000000*I

        ::

            sage: K.<c> = FunctionField(QQ)
            sage: A.<x> = AffineSpace(K, 1)
            sage: H = Hom(A, A)
            sage: f = H([x^2 + c])
            sage: f.dynatomic_polynomial(4)
            x^12 + 6*c*x^10 + x^9 + (15*c^2 + 3*c)*x^8 + 4*c*x^7 + (20*c^3 + 12*c^2 + 1)*x^6
            + (6*c^2 + 2*c)*x^5 + (15*c^4 + 18*c^3 + 3*c^2 + 4*c)*x^4 + (4*c^3 + 4*c^2 + 1)*x^3
            + (6*c^5 + 12*c^4 + 6*c^3 + 5*c^2 + c)*x^2 + (c^4 + 2*c^3 + c^2 + 2*c)*x
            + c^6 + 3*c^5 + 3*c^4 + 3*c^3 + 2*c^2 + 1

        ::

            sage: A.<z> = AffineSpace(QQ, 1)
            sage: H = End(A)
            sage: f = H([z^2+3/z+1/7])
            sage: f.dynatomic_polynomial(1).parent()
            Multivariate Polynomial Ring in z over Rational Field

        ::

            sage: R.<c> = QQ[]
            sage: A.<z> = AffineSpace(R,1)
            sage: H = End(A)
            sage: f = H([z^2 + c])
            sage: f.dynatomic_polynomial([1,1])
            z^2 + z + c

        ::

            sage: A.<x> = AffineSpace(CC,1)
            sage: H = Hom(A,A)
            sage: F = H([1/2*x^2 + sqrt(3)])
            sage: F.dynatomic_polynomial([1,1])
            (2.00000000000000*x^4 + 5.85640646055102*x^2 + 24.0000000000000)/(x^2 + (-2.00000000000000)*x + 3.46410161513775)
        """
        if self.domain() != self.codomain():
            raise TypeError("must have same domain and codomain to iterate")
        from sage.schemes.affine.affine_space import is_AffineSpace
        if is_AffineSpace(self.domain())==False:
            raise NotImplementedError("not implemented for subschemes")
        if self.domain().dimension_relative()>1:
            raise TypeError("does not make sense in dimension >1")
        G = self.homogenize(1)
        F = G.dynatomic_polynomial(period)
        T = G.domain().coordinate_ring()
        S = self.domain().coordinate_ring()
        if is_SymbolicExpressionRing(F.parent()):
            u = var(self.domain().coordinate_ring().variable_name())
            return F.subs({F.variables()[0]:u,F.variables()[1]:1})
        elif T(F.denominator()).degree() == 0:
            R = F.parent()
            phi = R.hom([S.gen(0), 1], S)
            return(phi(F))
        else:
            R = F.numerator().parent()
            phi = R.hom([S.gen(0), 1], S)
            return(phi(F.numerator())/phi(F.denominator()))