Esempio n. 1
0
File: main.py Progetto: bycxw/SSE-PT
            })
        #if epoch % args.print_freq == 0:
        #    with open("attention_map_{}.pickle".format(step), 'wb') as fw:
        #        pickle.dump(attention, fw)
        #    with open("batch_{}.pickle".format(step), 'wb') as fw:
        #        pickle.dump([u, seq], fw)
        #    with open("user_emb.pickle", 'wb') as fw:
        #        pickle.dump(user_emb_table, fw)
        #    with open("item_emb.pickle", 'wb') as fw:
        #        pickle.dump(item_emb_table, fw)
    if epoch % args.print_freq == 0:
        t1 = time.time() - t0
        T += t1
        #print 'Evaluating',
        t_test = evaluate(model, dataset, args, sess)
        t_valid = evaluate_valid(model, dataset, args, sess)
        #print ''
        #print 'epoch:%d, time: %f(s), valid (NDCG@10: %.4f, HR@10: %.4f), test (NDCG@10: %.4f, HR@10: %.4f)' % (
        #epoch, T, t_valid[0], t_valid[1], t_test[0], t_test[1])
        # print("[{0}, {1}, {2}, {3}, {4}, {5}],".format(epoch, T, t_valid[0], t_valid[1], t_test[0], t_test[1]))
        print_result(epoch, T, t_valid, t_test)
        print_result(epoch, T, t_valid, t_test, f=f)

        #f.write(str(t_valid) + ' ' + str(t_test) + '\n')
        #f.flush()
        t0 = time.time()

f.close()
sampler.close()
print("Done")
Esempio n. 2
0
                                                model.batch_lp_jp: batch_lp_jp,
                                                }
                                               )

                _valid_auc += valid_auc
                _test_auc += test_auc
            _valid_auc /= n_batch
            _test_auc /= n_batch

            f.write('%f %f\n' % (_valid_auc, _test_auc))
            f.flush()
            if _valid_auc > best_valid_auc:
                best_valid_auc = _valid_auc
                best_test_auc = _test_auc
                best_iter = i
                model.save(sess)
            elif i >= best_iter + 50:
                break
except:
    f.close()
    sampler.close()
    valid_sampler.close()
    test_sampler.close()
    exit(1)
sampler.close()
valid_sampler.close()
test_sampler.close()

f.write('Finished! %f, %f\n' % (best_valid_auc, best_test_auc))
f.close()
Esempio n. 3
0
def main():

    prepare_env()

    dataset, user_train, usernum, itemnum, num_batch = load_dataset()

    sampler = WarpSampler(
        user_train,
        usernum,
        itemnum,
        args=args,
        batch_size=args.batch_size,
        maxlen=args.maxlen,
        threshold_user=args.threshold_user,
        threshold_item=args.threshold_item,
        n_workers=3,
    )

    graph, model, num_experts, expert_paths, global_step, saver = create_model(
        usernum, itemnum, args)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config, graph=graph) as sess:
        sess.run(tf.global_variables_initializer())

        if num_experts > 1:
            for i, path in enumerate(
                    expert_paths):  # restore experts' variables
                restore_collection(path, "expert_{}".format(i), sess, graph)

        best_result = 0.0
        best_res_path = os.path.join(args.train_dir, args.best_res_log)
        if os.path.isfile(best_res_path):
            with open(best_res_path, 'r') as inf:
                best_result = float(inf.readline().strip())
        best_step = 0
        no_improve = 0
        save_path = tf.train.latest_checkpoint(args.train_dir)
        if save_path:
            saver.restore(sess, save_path)
            print("[restored] {}".format(save_path))
        else:
            save_path = saver.save(sess,
                                   os.path.join(args.train_dir, "model.ckpt"),
                                   global_step)
            print("[saved] {}".format(save_path))

        T = 0.0
        t0 = time.time()
        t_valid = evaluate_valid(model, dataset, args, sess)
        print("[init] time = {}, best = {}, eval HR@{} = {}, HR@{} = {}],".
              format(time.time() - t0, best_result, args.k, t_valid[0],
                     args.k1, t_valid[1]))
        if args.std_test:
            t0 = time.time()
            t_test = evaluate(model, dataset, args, sess)
            print(
                "[init] time = {}, test NDCG{} = {}, NDCG{} = {}, HR{} = {}, HR{} = {}]"
                .format(time.time() - t0, args.k, t_test[0], args.k1,
                        t_test[1], args.k, t_test[2], args.k1, t_test[3]))

        t0 = time.time()

        for epoch in range(1, args.num_epochs + 1):
            # for step in tqdm(range(num_batch), total=num_batch, ncols=70, leave=False, unit='b'):
            total_loss = 0.0
            for step in range(num_batch):
                u, seq, pos, neg = sampler.next_batch()
                if num_experts > 1:
                    log_freq = 100
                    loss, _, global_step_val = sess.run(
                        [model.loss, model.train_op, global_step], {
                            model.u: u,
                            model.input_seq: seq,
                            model.pos: pos,
                            model.is_training: True
                        })
                    if step % log_freq == 0:
                        print("[step-{}] {}/{}, avg_loss = {}".format(
                            global_step_val, step + 1, num_batch,
                            total_loss / log_freq))
                        total_loss = 0.0
                    else:
                        total_loss += loss
                else:
                    user_emb_table, item_emb_table, attention, auc, loss, _, global_step_val = sess.run(
                        [
                            model.user_emb_table, model.item_emb_table,
                            model.attention, model.auc, model.loss,
                            model.train_op, global_step
                        ], {
                            model.u: u,
                            model.input_seq: seq,
                            model.pos: pos,
                            model.neg: neg,
                            model.is_training: True
                        })
                    print("[step-{}] {}/{}, auc = {}, loss = {}".format(
                        global_step_val, step + 1, num_batch, auc, loss))
                sys.stdout.flush()

            if epoch % args.eval_freq == 0:
                t1 = time.time()
                T += t1 - t0
                # t_test = evaluate(model, dataset, args, sess)
                t_valid = evaluate_valid(model, dataset, args, sess)
                t2 = time.time()
                # print("[{0}, {1}, {2}, {3}, {4}, {5}],".format(epoch, T, t_valid[0], t_valid[1], t_test[0], t_test[1]))
                print(
                    "[epoch = {}, time = {} (train/eval = {}/{}), HR@{} = {}, HR@{} = {}],"
                    .format(epoch, T, t1 - t0, t2 - t1, args.k, t_valid[0],
                            args.k1, t_valid[1]))
                t0 = t2

                # early stopping
                if t_valid[args.eval_tgt_idx] > best_result:
                    print("[best_result] {} (step-{}) < {} (step-{})".format(
                        best_result, best_step, t_valid[args.eval_tgt_idx],
                        global_step_val))
                    best_result = t_valid[args.eval_tgt_idx]
                    best_step = global_step_val
                    # ckpt_paths = glob(os.path.join(args.train_dir, "model.ckpt*"))
                    # for path in ckpt_paths:
                    #   os.remove(path)
                    #   print("[removed] {}".format(path))
                    with open(best_res_path, 'w') as outf:
                        outf.write("{}".format(best_result))
                    save_path = saver.save(
                        sess, os.path.join(args.train_dir, "model.ckpt"),
                        global_step_val)
                    print("[saved] {}".format(save_path))
                    no_improve = 0
                else:
                    print("[best_result] {} (step-{}) > {} (step-{})".format(
                        best_result, best_step, t_valid[args.eval_tgt_idx],
                        global_step_val))
                    no_improve += args.eval_freq
                    if args.early_stop_epochs < 0:  # turn off early stopping
                        save_path = saver.save(
                            sess, os.path.join(args.train_dir, "model.ckpt"),
                            global_step_val)
                        print("[saved] {}".format(save_path))
                    else:
                        if no_improve >= args.early_stop_epochs:
                            print(
                                "[stop training] no improvement for {} epochs".
                                format(no_improve))
                            break
                sys.stdout.flush()

        if args.std_test:
            t_test = evaluate(model, dataset, args, sess)
            print(
                "[final] time = {}, test NDCG{} = {}, NDCG{} = {}, HR{} = {}, HR{} = {}]"
                .format(time.time() - t0, args.k, t_test[0], args.k1,
                        t_test[1], args.k, t_test[2], args.k1, t_test[3]))

    sampler.close()
    print("[Done]")
Esempio n. 4
0
        # whether to enable rank weight. If True, the loss will be scaled by the estimated
        # log-rank of the positive items. If False, no weight will be applied.

        # This is particularly useful to speed up the training for large item set.

        # Weston, Jason, Samy Bengio, and Nicolas Usunier.
        # "Wsabie: Scaling up to large vocabulary image annotation." IJCAI. Vol. 11. 2011.
        use_rank_weight=True,

        # whether to enable covariance regularization to encourage efficient use of the vector space.
        # More useful when the size of embedding is smaller (e.g. < 20 ).
        use_cov_loss=False,

        # weight of the cov_loss
        cov_loss_weight=1)

    log_file = open(
        'dataset_' + args.dataset + '_margin_' + str(args.margin) + '_lr_' +
        str(args.lr) + '.csv', "w")
    monitor = Monitor(log_file=log_file)
    optimize(model,
             sampler,
             train,
             valid,
             max_steps=args.max_steps,
             monitor=monitor,
             verbose=args.verbose)
    print("%s close sampler, close and save to log file" % datetime.now())
    log_file.close()
    sampler.close()  # important! stop multithreading
    print("%s log file and sampler have closed" % datetime.now())
Esempio n. 5
0
def train_sasrec(n_args):
    if not os.path.exists("../../prediction_result/" + n_args.o_filename +
                          ".csv"):
        if not os.path.isdir(n_args.dataset + '_' + n_args.train_dir):
            os.makedirs(n_args.dataset + '_' + n_args.train_dir)
        with open(
                os.path.join(n_args.dataset + '_' + n_args.train_dir,
                             'args.txt'), 'w') as f:
            f.write('\n'.join([
                str(k) + ',' + str(v)
                for k, v in sorted(vars(n_args).items(), key=lambda x: x[0])
            ]))
        f.close()

        dataset = data_partition(n_args.dataset, n_args.p_dataset, None)
        recall_s1 = Get_Recall_S1(n_args.recall_ds)
        # recall_v = Get_Recall_S1(n_args.recall_v)
        [
            user_train, user_valid, user_test, user_pred, user_valid_, usernum,
            itemnum
        ] = dataset
        num_batch = math.ceil(len(user_train) / n_args.batch_size)
        cc = 0.0
        for u in user_train:
            cc += len(user_train[u])
        print('average sequence length: %.2f' % (cc / len(user_train)))

        f = open(
            os.path.join(n_args.dataset + '_' + n_args.train_dir, 'log.txt'),
            'w')
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        sess = tf.Session(config=config)

        sampler = WarpSampler(user_train,
                              usernum,
                              itemnum,
                              batch_size=n_args.batch_size,
                              maxlen=n_args.maxlen,
                              n_workers=4)
        model = Model(usernum, itemnum, n_args)

        if not os.listdir("../user_data/model_data/"):
            sess.run(tf.global_variables_initializer())
            T = 0.0
            t0 = time.time()
            try:
                for epoch in range(1, n_args.num_epochs + 1):
                    for step in tqdm(range(num_batch),
                                     total=num_batch,
                                     ncols=70,
                                     leave=False,
                                     unit='b'):
                        u, seq, pos, neg = sampler.next_batch()
                        auc, loss, _ = sess.run(
                            [model.auc, model.loss, model.train_op], {
                                model.u: u,
                                model.input_seq: seq,
                                model.pos: pos,
                                model.neg: neg,
                                model.is_training: True
                            })

                    if epoch % 20 == 0:
                        t1 = time.time() - t0
                        T += t1
                        print('Evaluating')
                        t_test = evaluate(model, dataset, n_args, sess)
                        t_valid = evaluate_valid(model, dataset, n_args, sess)
                        print('')
                        print(
                            'epoch:%d, time: %f(s), valid (NDCG@50: %.4f, HR@10: %.4f), test (NDCG@50: %.4f, HR@10: %.4f)'
                            % (epoch, T, t_valid[0], t_valid[1], t_test[0],
                               t_test[1]))
                        f.write(str(t_valid) + ' ' + str(t_test) + '\n')
                        f.flush()
                        t0 = time.time()
                saver = tf.train.Saver()
                saver.save(sess, "../user_data/model_data/sasrec_model.ckpt")
                predict_result(model,
                               dataset,
                               recall_s1,
                               n_args,
                               sess,
                               type='pred')
                # predict_result(model, dataset, recall_v, args, sess, type='valid')

            except:
                sampler.close()
                f.close()
                exit(1)
        else:
            saver = tf.train.Saver()
            with tf.Session() as sess:
                saver.restore(sess,
                              "../user_data/model_data/sasrec_model.ckpt")
                predict_result(model,
                               dataset,
                               recall_s1,
                               n_args,
                               sess,
                               type='pred')
                # predict_result(model, dataset, recall_v, args, sess, type='valid')

        f.close()
        sampler.close()
        print("Done")