def encoder(domains_list):
    apn_list = []
    for dom in domains_list:
        for a in dom.apn:
            if a not in apn_list:
                apn_list.append(a)
    save_arrays.save(apn_list, "./files/apn.obj")
    cit_list = []
    for dom in domains_list:
        for c in dom.cit:
            if c not in cit_list:
                cit_list.append(c)
    save_arrays.save(cit_list, "./files/cit.obj")
    loc_list = []
    for dom in domains_list:
        for l in dom.loc:
            if l not in loc_list:
                loc_list.append(l)
    save_arrays.save(loc_list, "./files/loc.obj")
    obj_list = []
    for dom in domains_list:
        for o in dom.obj:
            if o not in obj_list:
                obj_list.append(o)
    save_arrays.save(obj_list, "./files/obj.obj")
    tru_list = []
    for dom in domains_list:
        for t in dom.tru:
            if t not in tru_list:
                tru_list.append(t)
    save_arrays.save(tru_list, "./files/tru.obj")
Esempio n. 2
0
def encoder(domains_list):
    apn_list = []
    for dom in domains_list:
        apn_list = apn_list + [element.upper() for element in dom.apn]
    apn_list = list(set(apn_list))
    save_arrays.save(apn_list, "apn.obj")
    cit_list = []
    for dom in domains_list:
        cit_list = cit_list + [element.upper() for element in dom.cit]
    cit_list = list(set(cit_list))
    save_arrays.save(cit_list, "cit.obj")
    loc_list = []
    for dom in domains_list:
        loc_list = loc_list + [element.upper() for element in dom.loc]
    loc_list = list(set(loc_list))
    save_arrays.save(loc_list, "loc.obj")
    obj_list = []
    for dom in domains_list:
        obj_list = obj_list + [element.upper() for element in dom.obj]
    obj_list = list(set(obj_list))
    save_arrays.save(obj_list, "obj.obj")
    tru_list = []
    for dom in domains_list:
        tru_list = tru_list + [element.upper() for element in dom.tru]
    tru_list = list(set(tru_list))
    save_arrays.save(tru_list, "tru.obj")
Esempio n. 3
0
            'action_type': train_y[0],
            'type1': train_y[1],
            'param1': train_y[2],
            'type2': train_y[3],
            'param2': train_y[4],
            'type3': train_y[5],
            'param3': train_y[6],
            'type4': train_y[7],
            'param4': train_y[8]
        },
                          batch_size=128,
                          epochs=10,
                          verbose=2,
                          validation_split=0.1)

        save_arrays.save(history, 'history')

        net.save('model')

    else:
        name = sys.argv[1]
        model = load_model(name)
        testing = open("mini_test", "rb")
        test = pickle.load(testing)
        test_x, test_y = neuralNet.split(test)
        res_y = model.predict(test_x)
        l = []
        for i in range(len(res_y[0])):
            pred = np.array([])
            correct = np.array([])
            for j in range(len(test_y)):
Esempio n. 4
0
import utils
import save_arrays
import sys

if __name__ == '__main__':
    name = "goals"
    read_folder, save_path = utils.get_folders(sys.argv, name)
    plans = utils.get_plans(read_folder)
    goals = []
    for p in plans:
        if p.goals not in goals:
            goals.append(p.goals)
    save_arrays.save(goals, save_path)
    print(len(goals))

            dictionary[num_actions[i]] = 1
        else:
            dictionary[num_actions[i]] += 1
    dictionary = {
        k: v
        for k, v in sorted(
            dictionary.items(), key=lambda item: item[0], reverse=False)
    }
    vals = np.fromiter(dictionary.values(), dtype=float)
    file = open("num_azioni_nei_piani.txt", "w")
    for k, w in dictionary.items():
        file.write("Numero azioni nel piano: " + str(k) + "   Frequenza: " +
                   str(w) + "\n")
    file.close()
    plt.plot(vals)
    plt.xlabel('numero_azioni_nei_piani')
    plt.ylabel('frequenza_numero_azioni')
    plt.savefig("plot_distribuzione_numero_azioni_nei_piani.png")
    plt.show()


if __name__ == '__main__':
    folder = "XmlPlans"
    plans = get_plans(folder)
    plot_num_actions_plans(plans)
    domains = logistics_domains(folder)
    init_statistics(domains)
    save_arrays.save(domains, "./files/domains.obj")
    save_arrays.save(plans, "./files/piani.obj")
    encoder(domains)
Esempio n. 6
0
def save_db(db):
    np.random.shuffle(db)
    dim = int(0.8 * len(db))
    train, test = db[:dim], db[dim:]
    save_arrays.save(train, "training_set")
    save_arrays.save(test, "test_set")
Esempio n. 7
0
import utils
import numpy as np
import save_arrays
import pickle
import oneHot_deep

if __name__ == '__main__':

    file = open("goal", "rb")
    goal = pickle.load(file)
    dizionario_goal = oneHot_deep.create_dictionary_goals(goal)
    dizionario_goal = oneHot_deep.shuffle_dictionary(dizionario_goal)
    oneHot_deep.completa_dizionario(dizionario_goal)
    save_arrays.save(dizionario_goal, "dizionario_goal")
Esempio n. 8
0
import crea_istanze

if __name__ == '__main__':
        file1 = open("apn.obj", "rb")
        apn_list = pickle.load(file1)
        file2 = open("cit.obj", "rb")
        cit_list = pickle.load(file2)
        file3 = open("obj.obj", "rb")
        obj_list = pickle.load(file3)
        file4 = open("loc.obj", "rb")
        loc_list = pickle.load(file4)
        file5 = open("tru.obj", "rb")
        tru_list = pickle.load(file5)

        apn_list = na.natsorted(apn_list[1:])
        cit_list = na.natsorted(cit_list)
        obj_list = na.natsorted(obj_list[1:])
        tru_list = na.natsorted(tru_list)
        loc_list = na.natsorted(loc_list)

        folder = "SOL_files"
        plans = utils.get_plans(folder)
        oneHot.init(plans, apn_list, cit_list, obj_list, loc_list, tru_list)
        db = crea_istanze.crea(plans)

        np.random.shuffle(db)
        dim = int(0.8 * len(db))
        train, test = db[:dim], db[dim:]
        save_arrays.save(train, "training_set")
        save_arrays.save(test, "test_set")
        print('dataset created')