sv.save_all(all_bands_outliers,fileroot='band',typ='data',folder_root='IQR_BANDS' ext='txt') #For each run, we have a plot of: # * The volume standard deviation values; # * The outlier points from the std values, marked on the plot with an 'o' # marker; # * A horizontal dashed line at the lower IRQ threshold; # * A horizontal dashed line at the higher IRQ threshold for index, sdevs in enumerate(all_sdevs): outlier_sdevs = all_iqr_outliers[index] outlier_interval = all_bands_outliers[index] plt_fmri.plot_sdevs(sdevs, outlier_sdevs, outlier_interval) sv.save_plt(fileroot='vol_std_plt', index=index, folder_root='VOL_STD_PLTS',ext='png') plt.close() #Do the same for the RMS all_rms = [] all_outliers_rms = [] all_bands_rms = [] for data in all_data: rms = dl.vol_rms_diff(data) outliers_rms, rms_interval = dn.iqr_outliers(rms) all_rms.append(rms) all_outliers_rms.append(outliers_rms) all_bands_rms.append(rms_interval) for index, rms in enumerate(all_rms): outlier_rms = all_outliers_rms[index]