labels_name = argv[2] coords_name = argv[3] AI_saved_dir = argv[5] data, tracer, coords = astro_mnist.read_data_sets(images_name, labels_name, coords_name, train_weight=0, validation_weight=0, test_weight=1) print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) data.test.cls = np.argmax(data.test.labels, axis=1) # save arrangement and coords failure = save_arrangement(images_name[:-4], directory, data, tracer) if not failure: print("tracer and data is saved.") failure = save_coords(images_name[:-4], directory, coords) if not failure: print("coords are saved.") #----------------------------------- # Data dimension # We know that MNIST images are 28 pixels in each dimension. img_size = len(data.test.images[0]) print("image size = {0}".format(img_size)) # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * 1 # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, 1) # Number of colour channels for the images: 1 channel for gray-scale.
equal_batch = False else: print ("Wrong batch_format option") exit() #------------------------------------ # Load Data # We should play a mask on image print ("starting time: {0}".format(time_stamp)) data, tracer, coords = astro_mnist.read_data_sets(images_name, labels_name, coords_name) print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) #----------------------------------- # save arrangement and coords failure = save_arrangement(images_name[:-4], time_stamp, data, tracer) if not failure: print ("tracers and data are saved.") failure = save_coords(images_name[:-4], time_stamp, coords) if not failure: print ("coords are saved.") #----------------------------------- # Data dimension img_maj = imply_mask.count('0') width_of_data = None pick_band_array = None if consider_error == 'yes': width_of_data = 2 repeat_imply_mask = imply_mask + imply_mask pick_band_array = np.where(np.array(list(repeat_imply_mask), dtype = int) == 0) elif consider_error == 'no':
VERBOSE = 0 # measure times start_time = time.time() time_stamp = argv[3] #----------------------------------- # Load Data images_name = argv[1] labels_name = argv[2] data, tracer = astro_mnist.read_data_sets(images_name, labels_name) print("Size of:") print("- Training-set:\t\t{}".format(len(data.train.labels))) print("- Test-set:\t\t{}".format(len(data.test.labels))) print("- Validation-set:\t{}".format(len(data.validation.labels))) data.test.cls = np.argmax(data.test.labels, axis=1) # save the distribution if save_arrangement(argv, time_stamp, data, tracer): print("tracer and data is saved.") #----------------------------------- # Data dimension # We know that from the length of a data. img_size = len(data.train.images[0]) print("image size = {0}".format(img_size)) # Images are stored in one-dimensional arrays of this length. img_size_flat = img_size * 1 # Tuple with height and width of images used to reshape arrays. img_shape = (img_size, 1) # Number of colour channels for the images: 1 channel for gray-scale. num_channels = 1 # Number of classes, one class for each of 10 digits. num_classes = 3 # the number of iterations