from preprocess import get_test_train_data
from save_load import get_last_file_number
from save_load import load
from model import accuracy, loss
from keras import backend
import sys, os
import tensorflow as tf
from utils import visualize_layers 

if __name__ == '__main__':
    
    file = "F:\Projects\python\self_driving_game\data\dataset_mini.pz"
    if len(sys.argv)<=1: count = None
    else: count = int(sys.argv[1]);
    
    # Load model
    exp_folder = 'exp_' + '{0:03d}'.format(get_last_file_number(prefix='exp_', suffix=''))
    model = load(count, path=exp_folder)

    # Visualize model
    x_train, x_test, y_train, y_test = get_test_train_data(file, 10, tanh=True)
    visualization_folder = exp_folder + '/visualization'
    if not os.path.exists(visualization_folder): os.makedirs(visualization_folder)

    visualize_layers(model, x_test, path=visualization_folder)
    print('Visualization done...!')
Esempio n. 2
0
    file = os.environ['DATA_DIR'] + "/dataset_75p_gray.pz"
    x_train, x_test, y_train, y_test = get_test_train_data(file,
                                                           80000,
                                                           tanh=False)
    # x_train, x_test, y_train, y_test = get_test_train_data(file, 1000, tanh=False)

    learning_rate = 0.0005
    models = ['relu_with_scaled_sigmoid']
    drop_rates = [0.1]

    for i in range(len(models)):
        for j in range(len(drop_rates)):

            # Print output to file
            outfolder = 'exp_' + '{0:03d}'.format(
                get_last_file_number(prefix='exp_', suffix='') + 1)
            os.makedirs(outfolder)
            outfile = outfolder + '/' + 'train_' + '{0:03d}'.format(
                get_last_file_number(path=outfolder) + 1) + '.log'
            print('Printing to logfile at', outfile)
            sys.stdout = open(outfile, 'w+')

            print(
                'Title:',
                '{}_adam_{}_dropout_rate_{}'.format(models[i], learning_rate,
                                                    drop_rates[j]), '\n\n')

            if models[i] == 'relu':
                model = relu_model(learning_rate=learning_rate)
            elif models[i] == 'relu_with_scaled_sigmoid':
                model = relu_with_scaled_sigmoid_model(
Esempio n. 3
0
    y_pred = model.predict(x_test)
    y_pred = backend.cast(y_pred, 'float32')
    current_accuracy = accuracy(y_test, y_pred)
    current_loss = loss(y_test, y_pred)
    return [current_loss, current_accuracy]


if __name__ == '__main__':

    # file = "F:\Projects\python\self_driving_game\data\dataset_mini.pz"
    file = "data\dataset_mini.pz"
    if len(sys.argv) <= 1: count = None
    else: count = int(sys.argv[1])

    # Load model
    exp_folder = 'experiments/comparison/activation_and_lrs/exp_' + '{0:03d}'.format(
        get_last_file_number(prefix='exp_', suffix=''))
    model = load(count, path=exp_folder)

    # Evaluate model
    x_train, x_test, y_train, y_test = get_test_train_data(file,
                                                           10000,
                                                           tanh=True)
    print('x_test shape', x_test.shape)
    scores = evaluate_model(model, x_test, y_test)

    # Print scores
    print('\n\n')
    print("Loss: ", backend.get_value(scores[0]))
    print("Accuracy: ", backend.get_value(scores[1]) * 100, "%")
Esempio n. 4
0
import sys, os
import tensorflow as tf

def evaluate_model(model, x_test, y_test):
    y_pred = model.predict(x_test)
    y_pred = backend.cast(y_pred, 'float32')
    current_accuracy = accuracy(y_test, y_pred)
    current_loss = loss(y_test, y_pred)
    return [current_loss, current_accuracy]

if __name__ == '__main__':
    
    # file = "F:\Projects\python\self_driving_game\data\dataset_mini.pz"
    file = os.environ['DATA_DIR']+ "/dataset_75p_gray.pz"
    if len(sys.argv)<=1: count = None
    else: count = int(sys.argv[1]);
    
    # Load model
    exp_folder = 'experiments/comparison/activation_and_lrs/exp_' + '{0:03d}'.format(get_last_file_number(prefix='exp_', suffix=''))
    model = load(count, path=exp_folder)

    # Evaluate model
    x_train, x_test, y_train, y_test = get_test_train_data(file, 10000, tanh=True)
    print('x_test shape', x_test.shape)
    scores = evaluate_model(model, x_test, y_test)

    # Print scores
    print('\n\n')
    print("Loss: ", backend.get_value(scores[0]))
    print("Accuracy: ", backend.get_value(scores[1])*100, "%")