Esempio n. 1
0
def bump_const_inflow_pressure_speed_outflow(Nx=49,
                                             Ny=17,
                                             num_timesteps=10,
                                             dt=0.1):

    X, Y = get_bump_grid(N)
    grid = MultiblockGrid([(X, Y)])
    sbp = MultiblockSBP(grid, accuracy=2)
    initu = np.array([np.ones(X.shape)])
    initv = np.array([np.zeros(X.shape)])
    initp = np.array([np.ones(X.shape)])
    plt.quiver(X, Y, initu[0], initv[0])
    plt.show()

    def spatial_op(state):
        S,J = euler_operator(sbp, state) + \
              inflow_operator(sbp, state, 0, 'w', -1, 0) + \
              outflow_operator(sbp, state, 0, 'e') + \
              wall_operator(sbp, state, 0, 's') + \
              wall_operator(sbp, state, 0, 'n')

        return S, J

    U, V, P = solve(grid, spatial_op, initu, initv, initp, dt, num_timesteps)

    return grid, U, V, P, dt
Esempio n. 2
0
def circle_sector_cavity_flow(N=40,
                              num_timesteps=30,
                              dt=0.1,
                              angle=0.5 * np.pi):

    (X, Y) = get_circle_sector_grid(N, 0.0, angle, 0.2, 1.0)
    grid = MultiblockGrid([(X, Y)])
    sbp = MultiblockSBP(grid, accuracy=2)

    initu, initv, initp = get_gauss_initial_data(X, Y, 0.4, 0.4)
    plt.quiver(X, Y, initu[0], initv[0])
    plt.show()

    def spatial_op(state):
        S,J = euler_operator(sbp, state) + \
              wall_operator(sbp, state, 0, 'w') + \
              wall_operator(sbp, state, 0, 'e') + \
              wall_operator(sbp, state, 0, 's') + \
              wall_operator(sbp, state, 0, 'n')

        return S, J

    U, V, P = solve(grid, spatial_op, initu, initv, initp, dt, num_timesteps)

    return grid, U, V, P, dt
Esempio n. 3
0
def square_pressure_speed_outflow_everywhere(N=30, num_timesteps=10, dt=0.1):

    (X, Y) = np.meshgrid(np.linspace(0, 1, N), np.linspace(0, 1, N))
    X = np.transpose(X)
    Y = np.transpose(Y)
    grid = MultiblockGrid([(X, Y)])
    sbp = MultiblockSBP(grid, accuracy=2)
    initu, initv, initp = get_gauss_initial_data(X, Y, 0.5, 0.5)
    plt.quiver(X, Y, initu[0], initv[0])
    plt.show()

    def spatial_op(state):
        S,J = euler_operator(sbp, state) + \
              outflow_operator(sbp, state, 0, 'w') + \
              outflow_operator(sbp, state, 0, 'e') + \
              outflow_operator(sbp, state, 0, 's') + \
              outflow_operator(sbp, state, 0, 'n')

        return S, J

    U, V, P = solve(grid, spatial_op, initu, initv, initp, dt, num_timesteps)

    return grid, U, V, P, dt
Esempio n. 4
0
def bump_walls_and_pressure_speed_outflow(Nx=49,
                                          Ny=17,
                                          num_timesteps=10,
                                          dt=0.1):

    X, Y = get_bump_grid(N)
    grid = MultiblockGrid([(X, Y)])
    sbp = MultiblockSBP(grid, accuracy=2)
    initu, initv, initp = get_gauss_initial_data(X, Y, -0.5, 0.4)
    plt.quiver(X, Y, initu[0], initv[0])
    plt.show()

    def spatial_op(state):
        S,J = euler_operator(sbp, state) + \
              wall_operator(sbp, state, 0, 'w') + \
              outflow_operator(sbp, state, 0, 'e') + \
              wall_operator(sbp, state, 0, 's') + \
              wall_operator(sbp, state, 0, 'n')

        return S, J

    U, V, P = solve(grid, spatial_op, initu, initv, initp, dt, num_timesteps)

    return grid, U, V, P, dt
Esempio n. 5
0
class TestJacobians(unittest.TestCase):

    (X, Y) = get_circle_sector_grid(3, 0.0, 3.14 / 2, 0.2, 1.0)
    grid = MultiblockGrid([(X, Y)])
    sbp = MultiblockSBP(grid)
    U = X
    V = Y
    P = X**2 + Y**2
    state = np.array([U, V, P]).flatten()

    def test_euler_jacobian(self):
        S, J = euler_operator(self.sbp, self.state)

        for i, grad in enumerate(J):
            f = lambda x: euler_operator(self.sbp, x)[0][i]
            grad_approx = approx_fprime(self.state, f, 1e-8)
            grad_exact = J[i, :]
            err = np.linalg.norm(grad_approx - grad_exact, ord=np.inf)
            print("Euler OP, Gradient error = {:.2e}".format(err))
            self.assertTrue(err < 1e-5)

    def test_wall_jacobian(self):
        S, J = wall_operator(self.sbp, self.state, 0, 'w')
        J = J.todense()

        for i, grad in enumerate(J):
            f = lambda x: wall_operator(self.sbp, x, 0, 'w')[0][i]
            grad_approx = approx_fprime(self.state, f, 1e-8)
            grad_exact = J[i, :]
            err = np.linalg.norm(grad_approx - grad_exact, ord=np.inf)
            print("Wall SAT, Gradient error = {:.2e}".format(err))
            self.assertTrue(err < 1e-5)

    def test_pressure_jacobian(self):
        S, J = pressure_operator(self.sbp, self.state, 0, 'w')
        J = J.todense()

        for i, grad in enumerate(J):
            f = lambda x: pressure_operator(self.sbp, x, 0, 'w')[0][i]
            grad_approx = approx_fprime(self.state, f, 1e-8)
            grad_exact = J[i, :]
            err = np.linalg.norm(grad_approx - grad_exact, ord=np.inf)
            print("Pressure SAT, Gradient error = {:.2e}".format(err))
            self.assertTrue(err < 1e-5)

    def test_inflow_jacobian(self):
        S, J = inflow_operator(self.sbp, self.state, 0, 'w', -1, 1)
        J = J.todense()

        for i, grad in enumerate(J):
            f = lambda x: inflow_operator(self.sbp, x, 0, 'w', -1, 1)[0][i]
            grad_approx = approx_fprime(self.state, f, 1e-8)
            grad_exact = J[i, :]
            err = np.linalg.norm(grad_approx - grad_exact, ord=np.inf)
            print("Inflow SAT, Gradient error = {:.2e}".format(err))
            self.assertTrue(err < 1e-5)

    def test_outflow_jacobian(self):
        S, J = outflow_operator(self.sbp, self.state, 0, 'w')
        J = J.todense()

        for i, grad in enumerate(J):
            f = lambda x: outflow_operator(self.sbp, x, 0, 'w')[0][i]
            grad_approx = approx_fprime(self.state, f, 1e-8)
            grad_exact = J[i, :]
            err = np.linalg.norm(grad_approx - grad_exact, ord=np.inf)
            print("Outflow SAT, Gradient error = {:.2e}".format(err))
            self.assertTrue(err < 1e-5)