neg+=negtm

pickle.dump([neg, pos], open('negpos.pkl', 'wb'))
"""
neg, pos = pickle.load(open('negpos.pkl', 'rb'))

#neg = create_neg(input_shape)[None,:,:,:]
#pos= create_pos(input_shape)[None,:,:,:]

inputs = tf.placeholder(tf.float32,
                        shape=(batch_size, input_shape[0], input_shape[1], 1))
modify = []
for i in range(1, 4):
    modify.append('conv%d' % i)

logits, net, activations, modifys = sc(inputs, modify=modify)
print modifys
modifyv = {}
for i in range(1, 4):
    name = 'conv%d' % i
    print name
    modifyv[name] = np.ones(activations[name].shape)
with tf.Session() as sess:
    saver = tf.train.Saver()
    #saver.restore(sess,'ckpts5/39900.ckpt')
    #saver.restore(sess,'ckpts_manual_noise_gauss/1.ckpt')
    #saver.restore(sess,'ckpts_manual/1.ckpt')
    saver.restore(sess, 'ckpts_manual_noise_gauss2/1.ckpt')
    fd = {modifys['conv%d' % i]: modifyv['conv%d' % i] for i in range(1, 4)}
    fdpos = {inputs: pos}
    fdpos.update(fd)
Esempio n. 2
0
from sc_manual import sc
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from sample_maker import create_pos, create_neg

# Create mini-batch for demo

input_shape = (8, 8)
batch_size = 1
ch = 3

gradients = OrderedDict()
activations = OrderedDict()

inputs = tf.placeholder(tf.float32,
                        shape=(batch_size, input_shape[0], input_shape[1], 1))
logits, net, activations = sc(inputs)
with tf.Session() as sess:
    saver = tf.train.Saver()
    #saver.restore(sess,'ckpts_manual_noise/1.ckpt')
    #saver.restore(sess,'ckpts_manual_noise_0mean/1.ckpt')
    saver.restore(sess, 'ckpts_manual_noise_gauss2/1.ckpt')
    for tv in tf.trainable_variables():
        tvv = sess.run(tv)
        if tv.name.find('weights') > -1:
            _, _, bchs, tchs = tvv.shape
            for bch, tch in product(range(bchs), range(tchs)):
                print tv.name, bch, tch
                print tvv[:, :, bch, tch]
        if tv.name.find('biases') > -1:
            tchs = tvv.shape[0]
            for tch in range(tchs):