Esempio n. 1
0
def combine_stuff_masks(
    rles: List[RLE],
    class_ids: List[int],
    inst_ids: List[int],
    classes: List[Category],
) -> Tuple[List[RLE], List[int], List[int]]:
    """For each stuff class, combine masks into a single mask."""
    combine_rles: List[RLE] = []
    combine_cids: List[int] = []
    combine_iids: List[int] = []
    for class_id in sorted(set(class_ids)):
        category = classes[class_id]
        rles_c = [
            rle for rle, c_id in zip(rles, class_ids) if c_id == class_id
        ]
        iids_c = [
            iid for iid, c_id in zip(inst_ids, class_ids) if c_id == class_id
        ]
        if category.isThing is None or category.isThing:
            combine_rles.extend(rles_c)
            combine_cids.extend([class_id] * len(rles_c))
            combine_iids.extend(iids_c)
        else:
            combine_mask: NDArrayU8 = sum(  # type: ignore
                rle_to_mask(rle) for rle in rles_c)
            combine_rles.append(mask_to_rle(combine_mask))
            combine_cids.append(class_id)
            combine_iids.append(iids_c[0])
    return combine_rles, combine_cids, combine_iids
Esempio n. 2
0
def insseg_to_rle(frame: Frame, input_dir: str,
                  categories: List[Category]) -> Frame:
    """Convert ins_seg bitmasks to rle."""
    ann_score: Dict[str, List[Tuple[int, float]]] = {}
    img_name = frame.name.replace(".jpg", ".png")
    ann_score[img_name] = []
    bitmask: NDArrayU8 = np.array(
        Image.open(os.path.join(input_dir, img_name)),
        dtype=np.uint8,
    )

    if frame.labels is None:
        return frame
    for label in frame.labels:
        assert label.index is not None
        assert label.score is not None
        ann_score[img_name].append((label.index, label.score))

    masks, ann_ids, scores, category_ids = parse_res_bitmask(
        ann_score[img_name], bitmask)

    labels = []
    for ann_id in ann_ids:
        label = Label(
            id=ann_id,
            category=categories[category_ids[ann_id - 1] - 1].name,
            score=scores[ann_id - 1],
        )
        label.rle = mask_to_rle((masks == ann_id).astype(np.uint8))
        labels.append(label)
    frame.labels = labels
    return frame
Esempio n. 3
0
def semseg_to_rle(frame: Frame, input_dir: str,
                  categories: List[Category]) -> Frame:
    """Convert sem_seg bitmasks to rle."""
    frame.labels = []
    img_name = frame.name.replace(".jpg", ".png")
    bitmask: NDArrayU8 = np.array(
        Image.open(os.path.join(input_dir, img_name)),
        dtype=np.uint8,
    )
    category_ids: NDArrayU8 = np.unique(bitmask)

    label_id = 0
    for category_id in category_ids:
        label = Label(id=str(label_id))
        label.category = categories[category_id].name
        label.rle = mask_to_rle((bitmask == category_id).astype(np.uint8))
        frame.labels.append(label)
        label_id += 1

    return frame
Esempio n. 4
0
def parse_seg_objects(
    objects: List[Label],
    classes: List[Category],
    ignore_unknown_cats: bool = False,
    image_size: Optional[ImageSize] = None,
) -> Tuple[List[RLEDict], NDArrayI32, NDArrayI32, List[RLEDict]]:
    """Parse segmentation objects under Scalabel formats."""
    rles, labels, ids, ignore_rles = [], [], [], []
    class_names = [category.name for category in classes]
    for obj in objects:
        if obj.rle is not None:
            rle = obj.rle
        elif obj.poly2d is not None:
            assert (
                image_size
                is not None), "Requires ImageSize for Poly2D conversion to RLE"
            rle = mask_to_rle(poly2ds_to_mask(image_size, obj.poly2d))
        else:
            continue
        category = obj.category
        if category in class_names:
            if check_crowd(obj) or check_ignored(obj):
                ignore_rles.append(rle)
            else:
                rles.append(rle)
                labels.append(class_names.index(category))
                ids.append(int(obj.id))
        else:
            if not ignore_unknown_cats:
                raise KeyError(f"Unknown category: {category}")
    if any(category.isThing is not None and not category.isThing
           for category in classes):
        rles, labels, ids = combine_stuff_masks(rles, labels, ids, classes)
    rles_dict = [rle.dict() for rle in rles]
    ignore_rles_dict = [rle.dict() for rle in ignore_rles]
    labels_arr: NDArrayI32 = np.array(labels, dtype=np.int32)
    ids_arr: NDArrayI32 = np.array(ids, dtype=np.int32)
    return (rles_dict, labels_arr, ids_arr, ignore_rles_dict)
Esempio n. 5
0
def segtrack_to_rle(frame: Frame, input_dir: str,
                    categories: List[Category]) -> Frame:
    """Convert seg_track bitmasks to rle."""
    frame.labels = []
    img_name = frame.name.replace(".jpg", ".png")
    bitmask: NDArrayU8 = np.array(
        Image.open(os.path.join(input_dir, img_name)),
        dtype=np.uint8,
    )
    masks, instance_ids, _, category_ids = parse_bitmask(bitmask)

    # video parameters
    frame.name = frame.name.split("/")[-1]
    frame.videoName = img_name.split("/")[0]
    frame.frameIndex = int(img_name.split("-")[-1].split(".")[0]) - 1

    for i, _ in enumerate(instance_ids):
        label = Label(id=str(instance_ids[i]))
        label.category = categories[category_ids[i] - 1].name
        label.rle = mask_to_rle((masks == i + 1).astype(np.uint8))
        frame.labels.append(label)

    return frame