Esempio n. 1
0
def gridtopatch(NM, index):
	M, N    = NM, nmodesP
	S, WS 	= shifts(M), spec.chebweights(N)
	X, Y  	= spec.chebnodes(N), spec.chebnodes(N)	
	CC 		= np.insert(np.cumsum(WS) - 1, 0, -1)

	PX = np.sort((X + S[index[0], index[1]][0])/M)
	PY = np.sort(-(Y + S[index[0], index[1]][1])/M)

	return PX, PY
	def gridtopatch(self, PATCH, index):
		"""
		Gives the integration weights and the 
		"""
		M, N    = self.M, self.N
		S, WS 	= self.shifts(M), spec.chebweights(N)
		X, Y  	= spec.chebnodes(PATCH.N), spec.chebnodes(PATCH.N)	
 		CC 		= np.insert(np.cumsum(WS) - 1, 0, -1)

		self.PX = np.sort((X + S[index[0], index[1]][0])/M)
		self.PY = np.sort(-(Y + S[index[0], index[1]][1])/M)
		self.WX = np.sort((CC + S[index[0], index[1]][0])/M)
		self.WY = np.sort(-(CC + S[index[0], index[1]][1])/M)

		return self.WX, self.WY, self.PX, self.PY
def computeL2forpatch(NM):

    #--------------------------------------------------------------
    # Starting to compute solution
    #--------------------------------------------------------------
    if (1):
        # Two gaussians advecting
        computationaldomain = multipatch(npatches=1, nmodes=20, \
              leftboundary   = lambda x: np.exp(-(x**2.0)/0.1), \
              rightboundary  = lambda y: np.exp(-(y**2.0)/0.1), \
              potential     = None,
              nboundarymodes = NM)
        AF = lambda x, y: np.exp(-(x**2.0) / 0.1) + np.exp(-(y**2.0) / 0.1)
    else:
        # Two sine waves advecting
        computationaldomain = multipatch(npatches=1, nmodes=NM, \
              leftboundary   = lambda x: np.sin(np.pi*x), \
              rightboundary  = lambda y: np.sin(np.pi*y), \
              potential     = None,
              nboundarymodes = NM)
        AF = lambda x, y: -np.sin(np.pi * x) + -np.sin(np.pi * y)

    #--------------------------------------------------------------
    # Call solver
    #--------------------------------------------------------------
    domain = computationaldomain.globalsolve()[0, 0]

    #--------------------------------------------------------------
    # Extract coefficents from the patch
    #--------------------------------------------------------------
    CP     = spec.vandermonde(computationaldomain.N, \
           spec.chebnodes(computationaldomain.N))
    VNDM = np.kron(CP, CP)
    CFS = np.linalg.solve(VNDM, np.ravel(domain))
    COEFFS = np.reshape(CFS,
                        (computationaldomain.N + 1, computationaldomain.N + 1))

    #--------------------------------------------------------------
    # Mow plot the solution at a different set of points
    #--------------------------------------------------------------
    """
	There could be two ways to do this
	- Pad the coefficent matrix with zeros and then evaluate the Vandermonde matrix
	- Compute the Vandermonde matrix in 2D for nmodes != npoints
		- Very confusing with Krons. Doing this explicitly.	
	"""

    #--------------------------------------------------------------
    # Points where you're evaluating the new solution
    #--------------------------------------------------------------
    XNEW, YNEW = spec.chebnodes(computationaldomain.N*2 + 1), \
        spec.chebnodes(computationaldomain.N*2 + 1)
    if (0):
        #--------------------------------------------------------------
        # loop over all new points of the solution [SLOW!] [DEBUG?]
        #--------------------------------------------------------------
        PSOL = np.zeros(
            (computationaldomain.N * 2 + 2, computationaldomain.N * 2 + 2))
        for i, _x in enumerate(XNEW):  # all points in x-dir
            for j, _y in enumerate(YNEW):  # all points in y-dir
                SUM = 0
                T = np.eye(100)
                for index, value in np.ndenumerate(
                        COEFFS):  # sum over all coefficents
                    k = index[0]
                    l = index[1]
                    Tk_x = np.polynomial.chebyshev.chebval(_x, T[k])
                    Tl_y = np.polynomial.chebyshev.chebval(_y, T[l])
                    SUM = SUM + COEFFS[index] * Tk_x * Tl_y
                PSOL[i, j] = SUM
    else:
        #--------------------------------------------------------------
        # Pad coefficent matrix with zeros
        #--------------------------------------------------------------
        COEFFS_P = np.pad(COEFFS, \
            (0, (computationaldomain.N*2 + 1) - computationaldomain.N), 'constant')
        CQP= spec.vandermonde(computationaldomain.N*2 + 1, \
             spec.chebnodes(computationaldomain.N*2 + 1))
        VNDM_P = np.kron(CQP, CQP)
        PSOLV = np.dot(VNDM_P, np.ravel(COEFFS_P))
        PSOL = np.reshape(
            PSOLV,
            (computationaldomain.N * 2 + 2, computationaldomain.N * 2 + 2))

    #--------------------------------------------------------------
    # Now compute the analytic solution at the same points
    #--------------------------------------------------------------
    ASOL = np.zeros(
        (computationaldomain.N * 2 + 2, computationaldomain.N * 2 + 2))

    for i, _x in enumerate(XNEW):
        for j, _y in enumerate(YNEW):
            ASOL[i, j] = AF(_x, _y)

    #--------------------------------------------------------------
    # Compute L2 norm error
    #--------------------------------------------------------------
    AS = np.ravel(ASOL)
    PS = np.ravel(PSOL)
    GW = np.ravel(np.outer(spec.chebweights(computationaldomain.N*2 + 1), \
          spec.chebweights(computationaldomain.N*2 + 1)))
    L2 = np.sqrt(
        np.abs(np.dot(GW, (PS - AS)**2.0) / np.abs(np.dot(GW, AS**2.0))))

    #--------------------------------------------------------------
    # Plot the solution if necessary
    #--------------------------------------------------------------
    if (0):
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        # xx, yy = np.meshgrid(spec.chebnodes(computationaldomain.N), \
        # 						spec.chebnodes(computationaldomain.N))
        # ax.plot_wireframe(xx, yy, domain, linewidth=0.8)

        XX, YY = np.meshgrid(spec.chebnodes(computationaldomain.N*2+1), \
              spec.chebnodes(computationaldomain.N*2+1))
        ax.plot_wireframe(XX, YY, PSOL, color='k', linewidth=0.8)
        ax.plot_wireframe(XX, YY, ASOL, color='g', linewidth=0.8)
        plt.show()
    return L2
Esempio n. 4
0
 def integrationweights(self):
     # returns a 2D diagonal matrix
     N = self.N
     return np.diag(np.ravel(np.outer(spec.chebweights(N), \
      spec.chebweights(N))))
Esempio n. 5
0
def computeL2forgrid(NM):

	#--------------------------------------------------------------
	# Starting to compute solution
	#--------------------------------------------------------------
	if(0):
		computationaldomain = multipatch(npatches=NM, nmodes=nmodesP, \
								leftboundary  = lambda x: np.exp(-(x**2.0)/0.1), \
								rightboundary = lambda y: np.exp(-(y**2.0)/0.1), \
								potential 	  = None)
		AF	 = lambda x, y: np.exp(-(x**2.0)/0.1) + np.exp(-(y**2.0)/0.1)
	else:
		computationaldomain = multipatch(npatches=NM, nmodes=nmodesP, \
								leftboundary  = lambda x: np.sin(np.pi*x), \
								rightboundary = lambda y: np.sin(np.pi*y), \
								potential 	  = None)
		AF	 = lambda x, y: np.sin(np.pi*x) + np.sin(np.pi*y)

	#--------------------------------------------------------------
	# Call solver
	#--------------------------------------------------------------
	grid = computationaldomain.globalsolve()

	#--------------------------------------------------------------
	# Project the solution on each patch
	#--------------------------------------------------------------
	for index_grid, val in np.ndenumerate(grid):
		
		domain = grid[index_grid]
		#--------------------------------------------------------------
		# Extract coefficents from the patch
		#--------------------------------------------------------------
		CP 	   = spec.vandermonde(computationaldomain.N, \
									spec.chebnodes(computationaldomain.N))
		VNDM   = np.kron(CP, CP)  
		CFS    = np.linalg.solve(VNDM, np.ravel(domain))
		COEFFS = np.reshape(CFS, (computationaldomain.N+1, computationaldomain.N+1))

		#--------------------------------------------------------------	
		# Points where you're evaluating the new solution
		#--------------------------------------------------------------
		X, Y       = spec.chebnodes(computationaldomain.N), spec.chebnodes(computationaldomain.N)
		XNEW, YNEW = gridtopatch(NM, index_grid)

		#--------------------------------------------------------------
		# loop over all new points of the solution [SLOW!] [DEBUG]
		#--------------------------------------------------------------
		PSOL = np.zeros((len(XNEW), len(YNEW)))
		for i, _x in enumerate(XNEW):		# all points in x-dir
			for j, _y in enumerate(YNEW):	# all points in y-dir			
				SUM = 0
				T   = np.eye(100)
				for index, value in np.ndenumerate(COEFFS):	# sum over all coefficents
					k  = index[0]
					l  = index[1]
					Tk_x = np.polynomial.chebyshev.chebval(_x, T[k])
					Tl_y = np.polynomial.chebyshev.chebval(_y, T[l])
					SUM  = SUM + COEFFS[index]*Tk_x*Tl_y
				PSOL[i,j] = SUM
		
		#--------------------------------------------------------------
		# Now compute the analytic solution at the same points
		#--------------------------------------------------------------
		ASOL = np.zeros((len(XNEW), len(YNEW)))
		for i, _x in enumerate(XNEW):
			for j, _y in enumerate(YNEW):
				ASOL[i,j] = AF(_x,_y)
	
		if(1):
			import matplotlib.pyplot as plt
			# from mpl_toolkits.mplot3d import Axes3D
			# fig = plt.figure()
			# ax  = fig.add_subplot(111, projection='3d')
			
			# XX, YY = np.meshgrid(spec.chebnodes(nmodesP), \
			# 						spec.chebnodes(nmodesP))
			# ax.plot_wireframe(XX, YY, PSOL, color='k', linewidth=0.8)
			# ax.plot_wireframe(XX, YY, ASOL, color='g', linewidth=0.8)		

			plt.subplot(131)
			plt.contourf(X, Y, domain)
			plt.colorbar()
			plt.subplot(132)
			plt.contourf(XNEW, YNEW, PSOL)
			plt.colorbar()
			plt.subplot(133)
			plt.contourf(XNEW, YNEW, ASOL)
			plt.colorbar()
			plt.show()	

		np.set_printoptions(precision=4)
		#--------------------------------------------------------------
		# Compute L2 norm error
		#--------------------------------------------------------------
		AS = np.ravel(ASOL) 	
		PS = np.ravel(PSOL)
		# print 50*"-"
		# print index_grid
		# print AS
		# print PS
		# print 50*"-"
		GW = np.ravel(np.outer(spec.chebweights(nmodesP), \
								spec.chebweights(nmodesP)))
		L2 = np.sqrt(np.abs(np.dot(GW, (PS-AS)**2.0)/np.abs(np.dot(GW, AS**2.0))))
		print "PATCH %r L2 = %r"%(index_grid, L2)
	return L2
def computeL2forpatch(NM):

    sinwave = 0

    #--------------------------------------------------------------
    # Starting to compute solution
    #--------------------------------------------------------------
    if (sinwave):
        # Two gaussians advecting
        computationaldomain = multipatch(npatches=1, nmodes=20, \
              leftboundary   = lambda x: np.exp(-(x**2.0)/0.1), \
              rightboundary  = lambda y: np.exp(-(y**2.0)/0.1), \
              potential     = None,
              nboundarymodes = NM)
        AF = lambda x, y: np.exp(-(x**2.0) / 0.1) + np.exp(-(y**2.0) / 0.1)
    else:
        # Two sine waves advecting
        computationaldomain = multipatch(npatches=1, nmodes=NM, \
              leftboundary   = lambda x: np.sin(np.pi*x), \
              rightboundary  = lambda y: np.sin(np.pi*y), \
              potential     = None,
              nboundarymodes = NM)
        AF = lambda x, y: -np.sin(np.pi * x) + -np.sin(np.pi * y)

    #--------------------------------------------------------------
    # Call solver
    #--------------------------------------------------------------
    domain = computationaldomain.globalsolve()[0, 0]

    #--------------------------------------------------------------
    # Extract coefficents from the patch
    #--------------------------------------------------------------
    CP     = spec.vandermonde(computationaldomain.N, \
           spec.chebnodes(computationaldomain.N))
    VNDM = np.kron(CP, CP)
    CFS = np.linalg.solve(VNDM, np.ravel(domain))
    COEFFS = np.reshape(CFS,
                        (computationaldomain.N + 1, computationaldomain.N + 1))

    #--------------------------------------------------------------
    # Points where you're evaluating the new solution
    #--------------------------------------------------------------
    XNEW, YNEW = spec.chebnodes(computationaldomain.N*2 + 1), \
        spec.chebnodes(computationaldomain.N*2 + 1)

    #--------------------------------------------------------------
    # Pad coefficent matrix with zeros
    #--------------------------------------------------------------
    COEFFS_P = np.pad(COEFFS, \
        (0, (computationaldomain.N*2 + 1) - computationaldomain.N), 'constant')
    CQP= spec.vandermonde(computationaldomain.N*2 + 1, \
         spec.chebnodes(computationaldomain.N*2 + 1))
    VNDM_P = np.kron(CQP, CQP)
    PSOLV = np.dot(VNDM_P, np.ravel(COEFFS_P))
    PSOL = np.reshape(
        PSOLV, (computationaldomain.N * 2 + 2, computationaldomain.N * 2 + 2))

    #--------------------------------------------------------------
    # Now compute the lower mode boundary solution solution
    #--------------------------------------------------------------

    if (sinwave):
        # Two gaussians advecting
        computationaldomain = multipatch(npatches=1, nmodes=20, \
              leftboundary   = lambda x: np.exp(-(x**2.0)/0.1), \
              rightboundary  = lambda y: np.exp(-(y**2.0)/0.1), \
              potential     = None,
              nboundarymodes = NM+1)
        AF = lambda x, y: np.exp(-(x**2.0) / 0.1) + np.exp(-(y**2.0) / 0.1)
    else:
        # Two sine waves advecting
        computationaldomain = multipatch(npatches=1, nmodes=NM, \
              leftboundary   = lambda x: np.sin(np.pi*x), \
              rightboundary  = lambda y: np.sin(np.pi*y), \
              potential     = None,
              nboundarymodes = NM+1)
        AF = lambda x, y: -np.sin(np.pi * x) + -np.sin(np.pi * y)

    #--------------------------------------------------------------
    # Call solver
    #--------------------------------------------------------------
    domain = computationaldomain.globalsolve()[0, 0]

    #--------------------------------------------------------------
    # Extract coefficents from the patch
    #--------------------------------------------------------------
    CP     = spec.vandermonde(computationaldomain.N, \
           spec.chebnodes(computationaldomain.N))
    VNDM = np.kron(CP, CP)
    CFS = np.linalg.solve(VNDM, np.ravel(domain))
    COEFFS = np.reshape(CFS,
                        (computationaldomain.N + 1, computationaldomain.N + 1))

    #--------------------------------------------------------------
    # Now, plot the solution at a different set of points
    #--------------------------------------------------------------

    XNEW, YNEW = spec.chebnodes(computationaldomain.N*2 + 1), \
        spec.chebnodes(computationaldomain.N*2 + 1)

    #--------------------------------------------------------------
    # Pad coefficent matrix with zeros
    #--------------------------------------------------------------
    COEFFS_P = np.pad(COEFFS, \
        (0, (computationaldomain.N*2 + 1) - computationaldomain.N), 'constant')
    CQP= spec.vandermonde(computationaldomain.N*2 + 1, \
         spec.chebnodes(computationaldomain.N*2 + 1))
    VNDM_P = np.kron(CQP, CQP)
    PSOLV = np.dot(VNDM_P, np.ravel(COEFFS_P))
    ASOL = np.reshape(
        PSOLV, (computationaldomain.N * 2 + 2, computationaldomain.N * 2 + 2))

    #--------------------------------------------------------------
    # Compute L2 norm error
    #--------------------------------------------------------------
    AS = np.ravel(ASOL)
    PS = np.ravel(PSOL)
    GW = np.ravel(np.outer(spec.chebweights(computationaldomain.N*2 + 1), \
          spec.chebweights(computationaldomain.N*2 + 1)))
    L2 = np.sqrt(
        np.abs(np.dot(GW, (PS - AS)**2.0) / np.abs(np.dot(GW, AS**2.0))))
    return L2
Esempio n. 7
0
from scalarwave_spectral import spec
from scalarwave_patch import patch

# test projection of 2D functions on grid
np.set_printoptions(precision=4)
x, y   = spec.chebnodes(28), spec.chebnodes(28)
xx, yy = np.meshgrid(x, y) 
zz     = np.exp(-(xx)**2.0) + np.exp(-(yy)**2.0)
f      = lambda x, y: np.exp(-(x)**2.0/0.1) + np.exp(-(y)**2.0/0.1)
print "- Computing analytic solution."

# project the analytic function
# extremeley restricted in the domain in which this works. FIX IT.
zzP    = spec.projectfunction2D(f, 28, spec.chebnodes(28))	

print "- Finished projecting analytic solution."

# Compute L2 norm error
AS = np.ravel(zz) 	# renaming vars
PS = np.ravel(zzP)
GW = np.ravel(np.outer(spec.chebweights(28), spec.chebweights(28)))
print "+ L2 error norm:", np.sqrt(np.abs(np.dot(GW, (PS-AS)**2.0)/np.abs(np.dot(GW, AS**2.0))))

if(0):
	import matplotlib.pyplot as plt
	from mpl_toolkits.mplot3d import Axes3D
	fig = plt.figure()
	ax  = fig.add_subplot(111, projection='3d')
	ax.plot_wireframe(xx, yy, zz, linewidth=0.8)
	ax.plot_wireframe(xx, yy, zzP, color='k', linewidth=0.8)
	plt.show()