def main(): ckpt_filename = './ssd_300_kitti/ssd_model.ckpt' isess = tf.InteractiveSession() tensors = get_tenors(ckpt_filename, isess) saver = tf.train.Saver() saver.restore(isess, ckpt_filename) # Load a sample image. path = 'test_images/' path = '../kitti/voc_format/VOC2012/JPEGImages/' path = '../kitti/testing/image_2/' #path = "../PhotographicImageSynthesis/result_512p/final/" outpath = 'output_images/' image_names = sorted(os.listdir(path)) for idx, name in enumerate(image_names): idx += 7481 print("%06d.png" % idx) img = imread_as_jpg(path + "%06d.png" % idx) img = cv2.resize(img, (463, 150)) img = process_image(img, tensors, isess, select_threshold=0.8, nms_threshold=0.5)
def main(): #CUDA_VISIBLE_DEVICES="" os.environ['CUDA_VISIBLE_DEVICES'] = '' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' isess = tf.InteractiveSession() ckpt_filename = './ssd_300_kitti/ssd_model.ckpt' tensors = get_tenors(ckpt_filename, isess) predictions, localisations, logits, end_points, img_input, ssd = tensors rs = r".*\/conv[0-9]\/conv[0-9]_[0-9]/Relu$" rc = re.compile(rs) new_end_points = {} for op in tf.get_default_graph().as_graph_def().node: gr = rc.match(op.name) if gr: print(op.name) new_end_points[op.name.split( "/")[-2]] = tf.get_default_graph().get_tensor_by_name(op.name + ":0") """ for n in new_end_points: print(n,new_end_points[n]) """ path = '../kitti/voc_format/VOC2012/JPEGImages/' outpath = 'output_images/' image_names = sorted(os.listdir(path)) dimpkl = {} for name in image_names: img = imread_as_jpg(path + name) img = cv2.resize(img, (993 // 2, 300)) print(img.shape, name) #img = process_image(img, tensors,isess, select_threshold=0.8, nms_threshold=0.5) img = process_image(img, tensors, isess, select_threshold=0.8, nms_threshold=0.5) #mpimg.imsave(outpath + name, img, format='jpg') for n in new_end_points: val = isess.run([new_end_points[n]], feed_dict={img_input: img})[0] print(n, val.shape[1:3]) dimpkl[n] = val.shape[1:3] dill.dump(dimpkl, open("dim_300.pkl", "wb")) assert (False) mpimg.imsave(outpath + name, img, format='jpg')
def main(): nf = 256 zdim = 1024 filepath = "/workspace2/kitti/testing/image_2/007481.png" filepath = "test/test0_2.jpg" filepath = "test/test1_2.jpg" filepath = "test/noise3.jpg" filepath = "test/adversary.png" filepath = "/workspace2/kitti/training/image_2/000003.png" filepath = "/workspace2/kitti/testing/image_2/007597.png" filepath = "/workspace2/kitti/testing/image_2/007662.png" filepath = "/workspace2/kitti/testing/image_2/008001.png" filepath = "/workspace2/kitti/testing/image_2/007618.png" config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(config=config) images = tf.placeholder(tf.float32, [1, 150, 496, 3]) scdobj = scd.SCD(input=images) rgan = eval_rgan.rgan(images=scdobj.end_points["pool5"], z_dim=zdim, nf=nf, training=True) imgsynth_from_feature = eval_imgsynth.ImageSynthesizer(rgan.rec_x_out) scd_saver = scd.get_saver() scd_saver.restore(sess, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") imgsynth_saver = eval_imgsynth.get_saver() imgsynth_saver.restore( sess, "/workspace/imgsynth/result_kitti256p_2/model.ckpt-89") rgan_saver = eval_rgan.get_saver() #rgan_saver.restore(sess,"models/model-99999") rgan_saver.restore(sess, "models_doubleres_constr_x_rzx/model-80999") image = cv2.resize(scd.imread_as_jpg(filepath), (496, 150)) image = np.expand_dims(image, 0) reses = imgsynth_from_feature.generate_image_from_featuremap( sess, image, images) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/single_generated.jpg", a)
def main(): filepath = "/workspace2/kitti/testing/image_2/007481.png" filepath = "test/test0_2.jpg" filepath = "test/test1_2.jpg" filepath = "test/noise3.jpg" filepath = "test/adversary.png" filepath = "/workspace2/kitti/testing/image_2/007489.png" filepath = "test/single_generated.jpg" filepath = "test/valid_adv7.png" config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(config=config) images = tf.placeholder(tf.float32, [1, 150, 496, 3]) scdobj = scd.SCD(input=images) scd_saver = scd.get_saver() scd_saver.restore(sess, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") image = cv2.resize(scd.imread_as_jpg(filepath), (496, 150)) image = np.expand_dims(image, 0) reses = scdobj.get_image(sess, image) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/single_detected%d.jpg" % i, a)
def main(): config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) sess = tf.Session(config=config) #define tensors and models zb = 6 nf = 256 zdim = 1024 images = tf.placeholder(tf.float32, [2, 150, 496, 3]) z = tf.placeholder(tf.float32, [zb, zdim]) scdobj = scd.SCD(input=images) imgsynth = eval_imgsynth.ImageSynthesizer(scdobj.end_points["pool5"]) rgan = eval_rgan.rgan(images=scdobj.end_points["pool5"], z_dim=zdim, nf=nf, training=True) imgsynth_from_feature = eval_imgsynth.ImageSynthesizer(rgan.rec_x_out, reuse=True) rgan_from_z = eval_rgan.rgan(latent_vec=z, nf=nf, z_dim=zdim, reuse=True, training=True) imgsynth_from_z = eval_imgsynth.ImageSynthesizer(rgan_from_z.rec_x_p_out, reuse=True) #load weights scd_saver = scd.get_saver() scd_saver.restore(sess, "/workspace/imgsynth/ssd_300_kitti/ssd_model.ckpt") imgsynth_saver = eval_imgsynth.get_saver() imgsynth_saver.restore( sess, "/workspace/imgsynth/result_kitti256p_2/model.ckpt-89") rgan_saver = eval_rgan.get_saver() rgan_saver.restore(sess, "models/model-99999") co = [] image = cv2.resize( scd.imread_as_jpg("/workspace2/kitti/testing/image_2/007482.png"), (496, 150)) co.append(image) image = cv2.resize( scd.imread_as_jpg("/workspace2/kitti/testing/image_2/007481.png"), (496, 150)) co.append(image) #reses = imgsynth.generate_image_from_featuremap(np.expand_dims(image,0),images) image = np.array(co) #simply get detection result reses = scdobj.get_image(sess, image) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/detected%d.jpg" % i, a) #model:image=>feature, image decoder:feature=>image_hat reses = imgsynth.generate_image_from_featuremap(sess, image, images) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/test%d.jpg" % i, a) #model:image=>feature, gan:feature=>latent vector=>feature_hat, image decoder:feature_hat=>image_hat reses = imgsynth_from_feature.generate_image_from_featuremap( sess, image, images) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/test%d_2.jpg" % i, a) #get detection result thru gan and image decoder reses = scdobj.get_image(sess, reses) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/gan_detected%d.jpg" % i, a) return 0 #latent vector=>feature_hat, image decoder:feature_hat=>image_hat np.random.seed(0) zs = [] zsp = np.random.randn(zb, zdim) + 1 zs = np.array(zsp) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zs, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/noise%d.jpg" % i, a) #noise interpolation zsb = [] for i in range(0, zb): #zs.append(zsp[0]*float(i)/(float(zb)-1.)+zsp[1]*(1.-float(i)/(float(zb)-1.))) zsb.append(zsp[i] * (1. - i / (zb - 1))) zsb = np.array(zsb) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zsb, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/noise_interpolate%d.jpg" % i, a) #model:images=>features, gan:features=>latent vectors=>features_hat, interpolate:features_hat=>features_interplated, image decoder:feature_interplated=>image_hat zs = [] zsp = rgan.generate_noise_from_featuremap(sess, image, images) for i in range(0, zb): zs.append(zsp[0] * float(i) / zb + zsp[1] * (1 - float(i) / zb)) zs = np.array(zs) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zs, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/interpolate%d.jpg" % i, a) zs = [] zsp = rgan.generate_noise_from_featuremap(sess, image, images) for i in range(0, zb): zs.append(zsp[0] * float(i) / zb + zsp[1] * (1 - float(i) / zb) + 3) zs = np.array(zs) reses = imgsynth_from_z.generate_image_from_featuremap(sess, zs, z) for i, a in enumerate(reses): print(i) skimage.io.imsave("test/interpolate2%d.jpg" % i, a)
label_images = [None] * NUM_TRAINING_IMAGES for epoch in range(1, 201): if os.path.isdir("result_256p/%04d" % epoch): continue cnt = 0 for ind in np.random.permutation(NUM_TRAINING_IMAGES - 25) + 1: st = time.time() cnt += 1 if input_images[ind] is None: #label_images[ind]=helper.get_semantic_map("data/cityscapes/Label256Full/%08d.png"%ind)#training label #input_images[ind]=np.expand_dims(np.float32(scipy.misc.imread("data/cityscapes/RGB256Full/%08d.png"%ind)),axis=0)#training image label_images[ind] = np.load("hmlabels/%06d.npz" % ind)["arr_0"] #training label path = '../kitti/voc_format/VOC2012/JPEGImages/%06d.png' % ind img = imread_as_jpg(path) #img = cv2.resize(img, (993,300)) img = cv2.resize(img, (512, 256)) input_images[ind] = np.expand_dims(np.float32(img), axis=0) #training image _, G_current, l0, l1, l2, l3, l4, l5 = sess.run( [G_opt, G_loss, p0, p1, p2, p3, p4, p5], feed_dict={ label: np.concatenate( (label_images[ind], np.expand_dims(1 - np.sum(label_images[ind], axis=3), axis=3)), axis=3), real_image: input_images[ind],
parser.add_argument("--decay_factor", type=float, default=0.01, help="exponential annealing decay rate [0.01]") parser.add_argument("--doubleres", type=bool, default=False, help="exponential annealing decay rate [0.01]") parser.add_argument('--exdir', type=str, default='examples') parser.add_argument('--mddir', type=str, default='models') args = parser.parse_args() fixed_images = np.zeros([8, args.input_h, args.input_w, args.input_c]) for i in range(8): fixed_images[i, :, :, :] = cv2.resize( scd.imread_as_jpg( os.path.join(args.dataset_test_path, "%06d.png" % (i + 7481))), (args.input_w, args.input_h)) mnistWganInv = pxhdgan(x_dim=784, z_dim=args.z_dim, w=args.input_w, h=args.input_h, c=args.input_c, latent_dim=args.latent_dim, nf=256, batch_size=args.batch_size, c_gp_x=args.c_gp_x, lamda=args.lamda, output_path=args.output_path, args=args)
return x_p def inv_fn(x): z_p = rgan.generate_noise_from_featuremap(sess, x, images) return z_p if args.iterative: search = iterative_search else: search = recursive_search _, _, test_data = tflib.mnist.load_data() i = 0 co = [] image = cv2.resize(scd.imread_as_jpg(path), (496, 150)) co.append(image) image = np.array(co) x = image y = 1 adversary = search(gen_fn, inv_fn, cla_fn, x, y, y_t=y_t, h=upl, nsamples=args.nsamples, step=args.step, verbose=args.verbose) if args.iterative: