Esempio n. 1
0
def ramp(n, tag=''):
    int_times = np.round(np.linspace(50, 5000, n), 0)
    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 20)
        cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, j, j + 20, tag=tag)
    print('PROGRAM COMPLETE')
Esempio n. 2
0
def pair_ramp(n, tag=''):

    int_times = np.round(np.linspace(400, 700, n), 3)

    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 250)
        #Take pair of images
        cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, j, j + 250, tag=tag)
    print('PROGRAM COMPLETE')
Esempio n. 3
0
def dark_current(n, T, tag='', amb_temp=''):
    int_times = np.round(np.linspace(5, 500, n), 0)

    cam.printProgressBar(0, sum(int_times))
    y = 0

    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 20)

        cap, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        data = hdu_img[0].data

        dark_header = fits.getheader(unsorted_img)
        dark_header.append(('FPATEMP', T, 'Temperature of detector'))
        dark_header.append(('TEMPAMB', amb_temp, 'Ambient Temperature'))
        hdu_img.close()

        os.remove(unsorted_img)  #Delete image after data retrieval
        fits.writeto(unsorted_img, data, dark_header)
        cam.file_sorting(img_dir, j, j + 20, tag=tag)

        y += j
        cam.printProgressBar(y, sum(int_times))
    print('PROGRAM HAS COMPLETED')
Esempio n. 4
0
def full_well(n, int_t, tag=''):
    dit = cam.set_int_time(int_t)
    cam.set_frame_time(int_t + 20)
    cam.printProgressBar(0, n)

    for j in range(n):
        cap, _ = cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, dit, dit + 20, tag=tag)
        cam.printProgressBar(j, n)
Esempio n. 5
0
def persist_routine(dit, offset, end_t, tag):

    sorting_dir = persist_dir + '/' + tag
    os.mkdir(sorting_dir)
    img_name = sorting_dir + '/img_' + str(dit) + '_'

    #Run sld_on.exe
    subprocess.call(["C:\EDT\pdv\sld_on.exe"])
    print("SOAK BEGIN")

    cam.set_int_time(dit)
    cam.set_frame_time(dit + offset)

    fr = cam.read_frame_time()
    it = cam.read_int_time()
    print(fr, it)

    #Take throwaway image to open up cam
    cam.img_cap(routine, img_dir, 'f')
    os.remove(unsorted_img)

    #Run soak.exe
    subprocess.call(["C:\EDT\pdv\soak.exe"])
    t0 = time.time()  #Start Timer (time since soak)
    t = 0
    print("SOAK END")

    while t < end_t:
        cam.img_cap(routine, img_dir, 'f')
        t1 = time.time()
        t = t1 - t0
        t_s = round(t, 2)
        print("Image taken: {}".format(t_s))
        file_name = img_name + str(t_s) + '_.fits'
        os.rename(unsorted_img, file_name)

    print("PROGRAM COMPLETE")
Esempio n. 6
0
def master_bias(n, tag, T):
    '''
    Enter docstring here
    '''
    cam.set_int_time(0.033)
    cam.set_frame_time(100.033)
    cam.printProgressBar(0,
                         n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    stack = np.zeros((naxis1, naxis2), dtype=np.uint16)
    for j in range(n):
        cap, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        fits_img = hdu_img[0]
        data = fits_img.data
        hdu_img.close()  #Close image so it can be sorted

        stack = np.dstack((stack, data))

        cam.printProgressBar(j,n, prefix = 'Progress:', \
            suffix = 'Complete', length = 50)

        if j == n - 1:  #On final frame grab header
            bias_header = fits.getheader(unsorted_img)

        os.remove(unsorted_img)  #Delete image after data retrieval

    bias_header.append(('NDIT', n, 'Number of integrations'))
    bias_header.append(('TYPE', 'MASTER_BIAS', '0s exposure frame'))
    bias_header.append(('FPATEMP', T, 'Temperature of detector'))

    #Median Stack
    stack = stack[:, :, 1:]  #Slice off base layer
    master_bias = np.median(stack, axis=2)
    master_bias = master_bias.astype(np.uint16)
    #Write master frame to fits
    master_path = read_path + 'master_bias_' \
                + tag + '.fits'
    fits.writeto(master_path, master_bias, bias_header)
    print('PROGRAM HAS COMPLETED')
Esempio n. 7
0
def master_dark(i, n, T, tag=''):
    '''
    DIT and NDIT are inputs
    Function can also take tag for sorting individual frames onto local drive
    T is the FPA temperature used to record temperature of FPA for this dark
    which is written to file name and FITS header
    Program also outputs a .npy binary file containing 3D datacube of central (100,100)
    window for studying temporal variance over stack
    '''
    cam.set_int_time(i)
    cam.set_frame_time(i + 20)
    bias = cam.get_master_bias(T)

    cam.printProgressBar(0,
                         n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    stack = np.zeros((naxis1, naxis2), dtype=np.uint16)
    window = np.zeros((100, 100), dtype=np.uint16)
    for j in range(n):
        _, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        data = hdu_img[0].data
        hdu_img.close()  #Close image so it can be sorted

        data = data - bias
        stack = np.dstack((stack, data))

        data_window = cam.window(data, 100)
        window = np.dstack((window, data_window))

        cam.printProgressBar(j,n, prefix = 'Progress:', \
            suffix = 'Complete', length = 50)

        if j == n - 1:  #On final frame grab header
            dark_header = fits.getheader(unsorted_img)

        #Save single frame to local drive
        cam.file_sorting(local_img_dir, i, i + 20, tag=tag)

    #Median stack
    stack = stack[:, :, 1:]  #Slice off base layer
    master_dark = np.median(stack, axis=2)

    #Prepare window for temporal analysis
    window = window[:, :, 1:]  #Slice off base layer
    temp_var = np.median(np.var(stack, axis=2))
    temp_path = master_darks + 'dark_cube' \
                + str(i/1000) + '_' +str(T) +'C.npy'
    np.save(temp_path, window)

    dark_header.append(('NDIT', n, 'Number of integrations'))
    dark_header.append(('TYPE', 'MASTER_DARK', 'Median stack of dark frames'))
    dark_header.append(('FPATEMP', T, 'Temperature of detector'))
    dark_header.append(
        ('TEMPVAR', temp_var,
         'Median temporal variance of central (100,100) window'))

    #Output master frame to fits
    master_path = master_darks + 'master_dark_' \
                + str(i/1000) + '_' +str(T) +'C.fits'
    fits.writeto(master_path, master_dark, dark_header)
    print('PROGRAM HAS COMPLETED')
Esempio n. 8
0
import scicam as cam
import argparse

parser = argparse.ArgumentParser(prog='capture Image', description='Captures image using specified routine')
parser.add_argument('-i', type=float, help='Integration Time')
parser.add_argument('-g', type=str, help='Naming Tag',default = '')
parser.add_argument('-l', type=int, help='Number of integrations (NDIT)')
args = parser.parse_args()

img_dir = '//merger.anu.edu.au/mbirch/images'
if args.i:
    int_t = cam.set_int_time(args.i)
    frame_t = cam.set_frame_time((args.i+20))
else:
    int_t = cam.read_int_time()
    frame_t = cam.read_frame_time()
if args.l:
    for i in range(args.l):
        cam.img_cap('capture',img_dir)
        cam.file_sorting(img_dir,int_t,frame_t,tag=args.g)
else:
    cam.img_cap('capture',img_dir)
    cam.file_sorting(img_dir,int_t,frame_t,tag=args.g)